2025年电工杯A题数据收集分享

1. PVOD 数据集(河北省,2018–2019)

内容:包含10个光伏电站的15分钟分辨率的历史发电功率(LMD)和NWP数据,时间跨度为2018年7月1日至2019年6月13日。NWP数据由WRF模型生成,包含7个气象变量。

特点:数据完整,适用于研究季节性和地理因素对预测精度的影响。

来源:该数据集在相关研究中被使用,具体信息可参考相关文献。

SpringerOpen

2. SolarDB 数据集(多地点,5分钟分辨率)

内容:包含16个太阳能电站一年的发电数据,提供5分钟间隔的功率数据和每小时的天气数据。

特点:高时间分辨率,适合短期预测模型的训练和验证。

来源:该数据集在相关研究中被使用,具体信息可参考相关文献。

3. NREL 合成数据集(美国,2017–2018)

内容:基于美国国家可再生能源实验室(NREL)的SAM PVWatts模型,结合226个地点的地理特征和2017–2018年的ECMWF NWP数据,生成的合成光伏发电数据。

特点:覆盖广泛的地理区域,适合分析不同地理条件对预测精度的影响。

来源:该数据集在相关研究中被使用,具体信息可参考相关文献。

https://www2.nrel.gov/grid/solar-power-data

4. SKIPP'D 数据集(2017–2019)

内容:包含2017至2019年的天空图像和对应的光伏发电数据,适用于短期太阳能预测的深度学习研究。

特点:结合图像数据和发电数据,适合探索基于视觉信息的预测方法。

来源:该数据集在相关研究中被使用,具体信息可参考相关文献。

5. OpenClimateFix Quartz 项目(全球,2015–2020)

内容:使用GFS或ICON NWP数据预测全球25,000个光伏站点的发电量,涵盖2015至2020年的数据。

特点:数据量大,适合训练深度学习模型,分析不同气象条件对预测的影响。

来源:该项目的代码和数据可在GitHub上获取。

6. Synthetic PV & Wind Dataset(德国,合成数据)

内容:包含德国120个光伏和273个风电站点的合成发电数据,结合ICON-EU NWP模型的气象数据,时间跨度为500天,小时分辨率。

特点:提供详细的地理信息,适合研究空间相关性和多任务学习。

来源:该数据集在相关研究中被使用,具体信息可参考相关文献。

7. Global Renewables Watch(全球,2017–2024)

内容:基于高分辨率卫星图像,识别全球86,410个光伏电站和375,197个风力涡轮机,提供季度更新的建设时间和地理信息。

特点:适合进行全球范围内的可再生能源部署分析。

来源:该数据集在相关研究中被使用,具体信息可参考相关文献。

8.景云天气(能源气象科研数据服务平台)

https://energymeteo-pseo.sdu.edu.cn/dataset

标准测试数据集包括风电数据集和光伏数据集。其中风电数据集收录了风速统计分布区间、中心风速、平均风速、平均功率等信息。光伏数据集收录了辐照度、压力、湿度、云量、平均日照时间、理论功率以及实际功率等信息。该数据集将会不断扩充,为研究人员提供公共测试数据,用于对风电和光伏发电系统进行性能评估、算法验证和模型测试。

本平台提供基础功率预测功能,可以根据设备型号、场站位置、场站装机等参数,实现全国任意位置的风电和光伏功率预测,预测时长可以达到360 小时。高级功能拥有 3 公里精细化数值天气预报、深度学习智能预测模型,自动识别和订正预测误差,提高预测准确性、可靠性和稳定性,为用户提供高质量的服务。

A:光伏电站发电功率日前预测问 光伏发电是通过半导体材料的光电效应,将太阳能直接转化为电能的技术。光伏电站是由众多光伏发电单元组成的规模化发电设施。 光伏电站的发电功率主要由光伏板表面接收到的太阳辐射总量决定,不同季节太阳光倾角的变化导致了辐照强度的长周期变化,云量、阴雨、雾霾等气象因素导致了辐照强度短周期变化。 【核心内容】 成品文章 包含完整解思路、模型构建、数据分析与结果讨论。 格式规范,符合竞赛论文要求,可直接提交或稍作修改使用。 完整代码 提供Python和MATLAB语言实现,覆盖数据处理、模型训练、结果可视化全流程。 代码模块化设计,注释清晰,便于理解与二次开发。 结果表格 所有实验数据与结果均已整理成表,直观展示模型性能与对比分析。 提供一键转换工具,方便用户根据需求调整论文格式。 【产品优势】 高效实用:成品论文与代码已通过严格测试,确保结果准确且可复现。 全面覆盖:从思路解析到最终成果,一站式解决参赛需求。 灵活便捷:支持多平台使用,网盘直发,后续更新免费获取。 【适用人群】 希望快速掌握解思路与实现方法的学习者。 需要高质量参考材料的科研爱好者。 【交付清单】 成品论文(Word) Python代码包 数据集与结果表
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值