TensorFlow Lite 图像分类项目运行指南(Android Studio)
本教程旨在帮助读者解决运行 TFLClassify 项目过程中可能遇到的常见问题,涵盖项目配置、Gradle 构建失败、JDK 与 Android API 版本兼容性调整、以及 TensorFlow Lite 依赖版本更新等内容。
一、下载项目源码
首先,前往项目仓库:
🔗 https://github.com/hoitab/TFLClassify
点击右上角的 Code > Download ZIP
,或使用 git clone
命令将项目下载至本地。解压后,将其作为 Android Studio 项目导入。
二、解决 github 无法访问的问题
✅ 解决方案:
尝试 连接手机热点 以绕过可能的网络限制。通常能有效解决无法访问 GitHub 的问题。
三、JDK 版本兼容性调整
该项目使用较低版本的 JDK,因此请确保你已安装 JDK 11。
在 Android Studio 中进入 File > Project Structure > SDK Location
,选择 JDK 11 对应路径。
四、修改 Android API 版本
项目中 start
与 finish
两个模块的默认 API 版本不一致,建议统一修改为 Android 10(API 29)。
✅ 操作步骤:
- 打开
File > Project Structure
。 - 在
Modules
下,分别选中start
和finish
。 - 将
Compile SDK Version
和Target SDK Version
均设置为 29。
五、更新 TensorFlow Lite 依赖版本
在部分机器上,原项目中的 TensorFlow Lite 依赖版本较旧,可能会出现无法下载的错误。
原始依赖配置(不可用):
implementation 'org.tensorflow:tensorflow-lite-support:0.1.0-rc1'
implementation 'org.tensorflow:tensorflow-lite-metadata:0.1.0-rc1'
✅ 推荐更新版本:
implementation 'org.tensorflow:tensorflow-lite-support:0.3.1'
implementation 'org.tensorflow:tensorflow-lite-metadata:0.3.1'
更新后点击 Android Studio 顶部的 “Sync Now” 按钮进行同步。
六、总结
至此,你已经完成了对 TFLClassify 项目的环境配置与兼容性优化,接下来即可运行该项目并体验基于 TensorFlow Lite 的 Android 图像分类应用。
如需部署自定义模型或进一步优化性能,可参考官方文档:TensorFlow Lite on Android。