
CV
hohotiger
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
神经网络:输入到输出大小公式N=(W+2P-F)/S+1的理解
输入尺寸是W,做卷积从扩展了的特征图开始卷积,一定要加上padding,所以要加2P,还要减去F卷积核的大小,因为卷积核是到多余的宽度要减去才能塞满整个要被卷积的特征图,最后塞满特征图的卷积核除了最前面的一列(行)后面的尺寸要减去,所以是-F+1,再考虑步长,相当于一个宽度为F,步长为S的在W+2P长度上能走几步,所以要除以S,S相当于卷积核的一个隐含的宽度,S是多少卷积核就要一步占几位, ...原创 2023-04-18 10:01:15 · 433 阅读 · 0 评论 -
关于CNN的权重共享,CNN到底学到了什么?
CNN的fliter里的每个值都是学习出来的不是事先设定好的。 经过fliter处理后得到是特征图(feature map) 卷积减少权重参数的本质: 权重共享原创 2020-09-14 19:56:39 · 1449 阅读 · 0 评论 -
深度学习:什么是backbone,benchmark,baseline
backbone:骨干网络,比如alexnet,ZFnet,VGG,googlenet... benchmark:性能指标,比如accuracy,内存消耗,模型复杂度。. baseline:对照组,也就是被用来对比的模型。比如resnet中用来对比的CNN就是baseline。 ...原创 2020-07-02 11:14:55 · 7666 阅读 · 0 评论 -
log双线性模型log-bilinear model简单概括
LBLM(log-bilinear model)是自然语言处理中的比较简单的模型。 LBLM根据上下文的词向量来预测下一个词向量wnw_nwn,通过对上下文词向量的一个线性组合来表示: rwr_wrw是一个实数值词向量对于词www 对于下一个词的分布计算根据wnw_nwn预测表示和所有词的相似度表示计算出来 翻译自https://www.cs.toronto.edu/~hinton...翻译 2020-08-25 19:37:52 · 2645 阅读 · 0 评论