一篇文章搞懂数据仓库:四种常见数据模型(维度模型、范式模型等)

本文详细介绍了数据仓库建模的重要性及四种常见模型:维度模型(星型、雪花、星座),范式模型,Data Vault模型和Anchor模型,强调了规范设计在数据模型建设中的关键作用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

写在前面

一、为什么要进行数据仓库建模?

二、四种常见模型

2.1 维度模型

2.1.1 星型模型

2.1.2 雪花模型

2.1.3 星座模型

2.2 范式模型

2.3 Data Vault模型

2.4 Anchor模型

三 数据模型的评价标准

写在前面

大数据时代,维度建模已成为各大厂的主流方式。

维度建模从分析决策的需求出发构建模型,为分析需求服务。重点关注用户如何快速的完成数据分析,可以直观的反应业务模型中的业务问题,需要大量的数据预处理、数据冗余,有较好的大规模复杂查询的响应性能。

系列文章详见「数仓系列文章- 传送门」
一、为什么要进行数据仓库建模?

性能:良好的模型能帮我们快速查询需要的数据,减少数据的IO吞吐
成本:减少数据冗余、计算结果复用、从而降低存储和计算成本
效率:改善用户使用数据的体验,提高使用数据的效率
改善统计口径的不一致性,减少数据计算错误的可能性

二、四种常见模型
2.1 维度模型

维度建模按数据组织类型划分可分为星型模型、雪花模型、星座模型。

Kimball老爷爷维度建模四个步骤:

选择业务处理过程 > 定义粒度 > 选择维度 > 确定事实
2.1.1 星型模型

星型模型主要是维表和事实表,以事实表为中心,所有维度直接关联在事实表上,呈星型分布。
2.1.2 雪花模型

雪花模型,在星型模型的基础上,维度表上又关联了其他维度表。这种模型维护成本高,性能方面也较差,所以一般不建议使用。尤其是基于hadoop体系构建数仓,减少join就是减少shuffle,性能差距会很大。

星型模型可以理解为,一个事实表关联多个维度表,雪花模型可以理解为一个事实表关联多个维度表,维度表再关联维度表。
2.1.3 星座模型

星座模型,是对星型模型的扩展延伸,多张事实表共享维度

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值