安装cudnn之后,tf训练报错缺少libcudnn_ops_infer.so.8解决方法

在安装cudnn 8.0.4后,TensorFlow显示可以使用GPU,但在训练时遇到错误:`libcudnn_ops_infer.so.8: cannot open shared object file: No such file or directory`。问题源于拷贝cudnn文件时遗漏了一些库。解决方案是参照CSDN文章,完整拷贝libcudnn*相关文件到库路径,确保所有必需文件存在。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

问题描述:某天tf显示不可用gpu,但是torch可用gpu
分析:可能是cudnn出现问题了,然后重装了一下cudnn8.0.4,然后就提示可以使用gpu了。
测试命令如下:

import torch
print(torch.version) # PyTorch version
print(torch.version.cuda) # Corresponding CUDA version
print(torch.backends.cudnn.version()) # Corresponding cuDNN version
print(torch.cuda.get_device_name(0)) # GPU type
print(torch.cuda.is_available())

import tensorflow as tf
print(tf.__version__)
print(tf.test.is_gpu_available())#如果是true,说明gpu可用
tf.config.list_physical_devices('GPU')#显示当前使用的gpu信息

我重装的时候是参考的知乎文章:https://zhuanlan.zhihu.com/p/333362435,第3.4节和第4节的的教程进行操作的。

下载cudnn,解压,然后拷贝到指定目录…

操作完之后,gpu显示可用,但是tf一训练就报错。
报错信息是:

Could not load library libcudnn_ops_infer.so.8. Error: libcudnn_ops_infer.so.8: cannot open shared object file: No such file or directory
Please make sure libcudnn_ops_infer.so.8 is in your library path!

经过一顿分析,发现是直接使用拷贝命令的时候,只改了一些版本号,但是漏拷了一堆libcudnn_ops_infer.so.8等文件
参考了文章:https://blog.csdn.net/qq_44703886/article/details/112393149中,关于“缺少:libcudnn.so.8文件”一节的描述

对比两边安装的命令,在这一步中,知乎文章4.2节中命令只拷贝一个文件:

在这里插入图片描述

而csdn文章“缺少:libcudnn.so.8文件”一节中,命令是拷贝了一堆libcudnn*文件:

在这里插入图片描述

解决方法:参考csdn这篇文章,重新运行一下拷贝的命令,把缺少的几个文件拷贝过去,输入以下代码,拷贝文件过去即可。

sudo cp cuda/include/cudnn.h /usr/local/cuda/include/
sudo cp cuda/lib64/libcudnn* /usr/local/cuda/lib64/

缺少的就是红框的几个文件,拷贝过去就可以在tensorflow中使用gpu正常训练了。
在这里插入图片描述

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值