51nod 1113 矩阵连乘快速幂模板 (对100000007取模)

本文介绍了一种利用矩阵快速幂解决大规模矩阵乘法问题的方法。通过定义矩阵结构、初始化矩阵及实现矩阵乘法和快速幂运算,可以在较短时间内计算出大指数下的矩阵结果。适用于求解递归关系和矩阵乘法等问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目:点击打开链接

#include<cstdio>
#include<cmath>
#include<algorithm>
#define ll long long
#define M 1000000007
using namespace std;
const int maxn=105;
int N;
struct mat{
    ll m[maxn][maxn];
};
mat A,I;
void init(){
    for(int i=0;i<N;i++)
    for(int j=0;j<N;j++){
        scanf("%lld",&A.m[i][j]);
        A.m[i][j]%=M;
        I.m[i][j]=(i==j);
    }
}
mat multi(mat a,mat b){
    mat c;
    for(int i=0;i<N;i++)
    for(int j=0;j<N;j++){
            c.m[i][j]=0;
            for(int k=0;k<N;k++)
                c.m[i][j]+=a.m[i][k]*b.m[k][j]%M;
            c.m[i][j]%=M;
    }
    return c;
}
mat power(mat A,int k){
    mat ans=I,p=A;
    while(k){
        if(k&1){
            ans=multi(ans,p);
            k--;
        }
        k>>=1;
        p=multi(p,p);
    }
    return ans;
}
int main(){
    int k;
    scanf("%d%d",&N,&k);
    init();
    mat ans=power(A,k);
    for(int i=0;i<N;i++){
        printf("%lld",ans.m[i][0]);
        for(int j=1;j<N;j++)
            printf(" %lld",ans.m[i][j]);
        printf("\n");
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值