蓝桥杯 PREV-37 分巧克力(二分答案)

本文介绍了一道经典的编程竞赛题目——分巧克力问题。通过给定的N块不同尺寸的巧克力,需将其切割成K份相同大小的正方形巧克力,使得边长尽可能大。采用二分查找算法确定最优解。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目:点击打开链接

思路:

显然答案就是从1到100000挨个试就对了,所以可以二分查找答案。

87分时r写成了maxx,应该是maxx+1,否则最大是maxx时,这个数据处理不上。

#include<bits/stdc++.h>
using namespace std;
const int maxn=100005;

int h[maxn],w[maxn],n,k,maxx;

bool ok(int x){
    int ans=0;
    for(int i=0;i<n;i++){
        int a=h[i]/x;
        int b=w[i]/x;
        ans+=a*b;
    }
    if(ans>=k)
        return true;
    else
        return false;
}

int main(){
    cin>>n>>k;
    for(int i=0;i<n;i++){
        cin>>h[i]>>w[i];
        if(maxx<h[i])
            maxx=h[i];
        if(maxx<w[i])
            maxx=w[i];
    }
    int l=0,r=maxx+1;
    while(r>l){
        int mid=(l+r)/2;
        if(ok(mid))
            l=mid+1;
        else
            r=mid;
    }
    cout<<l-1<<endl;
    return 0;
}
历届试题 分巧克力  
时间限制:1.0s   内存限制:256.0MB
    
问题描述
  儿童节那天有K位小朋友到小明家做客。小明拿出了珍藏的巧克力招待小朋友们。
  小明一共有N块巧克力,其中第i块是Hi x Wi的方格组成的长方形。


  为了公平起见,小明需要从这 N 块巧克力中切出K块巧克力分给小朋友们。切出的巧克力需要满足:


  1. 形状是正方形,边长是整数
  2. 大小相同


  例如一块6x5的巧克力可以切出6块2x2的巧克力或者2块3x3的巧克力。


  当然小朋友们都希望得到的巧克力尽可能大,你能帮小Hi计算出最大的边长是多少么?
输入格式
  第一行包含两个整数N和K。(1 <= N, K <= 100000)
  以下N行每行包含两个整数Hi和Wi。(1 <= Hi, Wi <= 100000)
  输入保证每位小朋友至少能获得一块1x1的巧克力。
输出格式
  输出切出的正方形巧克力最大可能的边长。
样例输入
2 10
6 5
5 6
样例输出
2

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值