长安大学第三届ACM-ICPC程序设计竞赛 D (莫队算法/主席树)

本文通过一个具体的算法题目,介绍了如何使用莫队算法和主席树解决区间查询问题,并详细解析了代码实现过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目:点击打开链接

题意:

这些人站一列,有一些人是一队的,给一个区间,问这个区间站了多少队。

和C题放在一起,就发现莫队和尺取非常像了,只不过询问太多时,尺取就不够优秀了,需要对块排下序离线处理。

这个就思路就莫队处理,符合条件就ans++,提前用并查集处理下。

然后就是一些写法问题:

挪动区间时(尺取),我们始终认为所有的r,l在上一轮都已经处理过了。

所以,

查询区间外头的先减减,因为num数组在上轮加进去这个数了。

查询区间里头的先往外走,因为该点在上轮已经加进去了,不用再加一遍。

l=1,r=0。这样初始化为的是认为已经处理过了。(l=1是r走过时处理过了)

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int maxn=1e5+10;

int len,fa[maxn],num[maxn],an[maxn];
struct Query{
    int l,r,id,block;
    Query(){}
    Query(int L,int R,int ID):l(L),r(R),id(ID){
        block=l/len;
    }
    bool operator <(const Query rhs)const{
        if(block==rhs.block) return r<rhs.r;
        else return block<rhs.block;
    }
}query[maxn];

int find(int x){
    return x==fa[x]?x:fa[x]=find(fa[x]);
}
void Union(int x,int y){
    int a=find(x);
    int b=find(y);
    if(a==b)
        return;
    fa[a]=b;
}


int main(){
    int t,m,n,q;
    scanf("%d",&t);
    while(t--){
        scanf("%d%d",&n,&m);
        len=sqrt(n);
        for(int i=1;i<=n;i++) fa[i]=i;
        for(int i=0;i<m;i++){
            int a,b;
            scanf("%d%d",&a,&b);
            Union(a,b);
        }
        scanf("%d",&q);
        for(int i=1;i<=q;i++){
            int r,l;
            scanf("%d%d",&l,&r);
            query[i]=Query(l,r,i);
        }
        sort(query+1,query+q+1);
        memset(num,0,sizeof(num));
        //让一个集合的人的爸爸相同。
        //优秀,看到别人这么写不知道要比写在下面好多少倍。
        for(int i=1;i<=n;i++) find(i);

        int l=1,r=0,ans=0;
        for(int i=1;i<=q;i++){
            while(r<query[i].r){
                r++;
                if(!num[fa[r]]++) ans++;
            }
            while(r>query[i].r){
                if(!--num[fa[r]]) ans--;
                r--;
            }
            while(l<query[i].l){
                if(!--num[fa[l]]) ans--;
                l++;
            }
            while(l>query[i].l){
                l--;
                if(!num[fa[l]]++) ans++;
            }
            an[query[i].id]=ans;
        }
        for(int i=1;i<=q;i++)
            printf("%d\n",an[i]);
    }
    return 0;
}

主席树做法:

同上,用并查集处理了,把他们的值都变成父节点的值,然后套区间内的数的个数的主席树模板:

#include<bits/stdc++.h>
#define ll long long int
using namespace std;
const int maxn=1e6+10;
ll read(){
    ll x=0,f=1;char ch=getchar();
    while(ch>'9'||ch<'0'){if(ch=='-')f=-1;ch=getchar();}
    while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
    return x*f;
}

int n, q;
int cnt;
struct node{
    int l,r;
    int sum;
}t[maxn * 20];

int root[maxn],last[maxn],pre[maxn];
int fa[maxn];

int find(int x){
    return x==fa[x]?x:fa[x]=find(fa[x]);
}
void Union(int x,int y){
    int a=find(x);
    int b=find(y);
    if(a==b)
        return;
    fa[a]=b;
}

void update(int pos,int &rt,int l,int r){
    t[++cnt]=t[rt];
    rt=cnt;
    t[rt].sum++;
    if(l==r) return ;
    int mid=(l+r)>>1;
    if(pos<=mid) update(pos,t[rt].l,l,mid);
    else update(pos,t[rt].r,mid+1,r);
}
int query(int x,int y,int l,int r,int ql,int qr){
    if(ql<=l&&r<=qr) return t[y].sum-t[x].sum;
    else{
        int mid=(l+r)>>1,ans=0;
        if(ql<=mid) ans+=query(t[x].l,t[y].l,l,mid,ql,qr);
        if(mid<qr)  ans+=query(t[x].r,t[y].r,mid+1,r,ql,qr);
        return ans;
    }
}

int main(){
int t,m,n,q;
    t=read();
    while(t--){
        memset(pre,0,sizeof(pre));
        memset(last,0,sizeof(last));
        memset(root,0,sizeof(root));
        n=read(); m=read();
        for(int i=1;i<=n;i++)
            fa[i]=i;
        for(int i=1;i<=m;i++){
            int a=read(),b=read();
            Union(a,b);
        }
        for(int i=1;i<=n;i++) find(i);
        for(int i=1;i<=n;i++){
            pre[i]=last[fa[i]];
            last[fa[i]]=i;
        }
        for(int i=1;i<=n;i++){
            root[i]=root[i-1];
            update(pre[i],root[i],0,n);
        }
        q=read();
        for(int i=1;i<=q;i++){
            int ql=read(),qr=read();
            printf("%d\n",query(root[ql-1],root[qr],0,n,0,ql-1));
        }
    }
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值