题目:点击打开链接
题意:
这些人站一列,有一些人是一队的,给一个区间,问这个区间站了多少队。
和C题放在一起,就发现莫队和尺取非常像了,只不过询问太多时,尺取就不够优秀了,需要对块排下序离线处理。
这个就思路就莫队处理,符合条件就ans++,提前用并查集处理下。
然后就是一些写法问题:
挪动区间时(尺取),我们始终认为所有的r,l在上一轮都已经处理过了。
所以,
查询区间外头的先减减,因为num数组在上轮加进去这个数了。
查询区间里头的先往外走,因为该点在上轮已经加进去了,不用再加一遍。
l=1,r=0。这样初始化为的是认为已经处理过了。(l=1是r走过时处理过了)
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int maxn=1e5+10;
int len,fa[maxn],num[maxn],an[maxn];
struct Query{
int l,r,id,block;
Query(){}
Query(int L,int R,int ID):l(L),r(R),id(ID){
block=l/len;
}
bool operator <(const Query rhs)const{
if(block==rhs.block) return r<rhs.r;
else return block<rhs.block;
}
}query[maxn];
int find(int x){
return x==fa[x]?x:fa[x]=find(fa[x]);
}
void Union(int x,int y){
int a=find(x);
int b=find(y);
if(a==b)
return;
fa[a]=b;
}
int main(){
int t,m,n,q;
scanf("%d",&t);
while(t--){
scanf("%d%d",&n,&m);
len=sqrt(n);
for(int i=1;i<=n;i++) fa[i]=i;
for(int i=0;i<m;i++){
int a,b;
scanf("%d%d",&a,&b);
Union(a,b);
}
scanf("%d",&q);
for(int i=1;i<=q;i++){
int r,l;
scanf("%d%d",&l,&r);
query[i]=Query(l,r,i);
}
sort(query+1,query+q+1);
memset(num,0,sizeof(num));
//让一个集合的人的爸爸相同。
//优秀,看到别人这么写不知道要比写在下面好多少倍。
for(int i=1;i<=n;i++) find(i);
int l=1,r=0,ans=0;
for(int i=1;i<=q;i++){
while(r<query[i].r){
r++;
if(!num[fa[r]]++) ans++;
}
while(r>query[i].r){
if(!--num[fa[r]]) ans--;
r--;
}
while(l<query[i].l){
if(!--num[fa[l]]) ans--;
l++;
}
while(l>query[i].l){
l--;
if(!num[fa[l]]++) ans++;
}
an[query[i].id]=ans;
}
for(int i=1;i<=q;i++)
printf("%d\n",an[i]);
}
return 0;
}
主席树做法:
同上,用并查集处理了,把他们的值都变成父节点的值,然后套区间内的数的个数的主席树模板:
#include<bits/stdc++.h>
#define ll long long int
using namespace std;
const int maxn=1e6+10;
ll read(){
ll x=0,f=1;char ch=getchar();
while(ch>'9'||ch<'0'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
return x*f;
}
int n, q;
int cnt;
struct node{
int l,r;
int sum;
}t[maxn * 20];
int root[maxn],last[maxn],pre[maxn];
int fa[maxn];
int find(int x){
return x==fa[x]?x:fa[x]=find(fa[x]);
}
void Union(int x,int y){
int a=find(x);
int b=find(y);
if(a==b)
return;
fa[a]=b;
}
void update(int pos,int &rt,int l,int r){
t[++cnt]=t[rt];
rt=cnt;
t[rt].sum++;
if(l==r) return ;
int mid=(l+r)>>1;
if(pos<=mid) update(pos,t[rt].l,l,mid);
else update(pos,t[rt].r,mid+1,r);
}
int query(int x,int y,int l,int r,int ql,int qr){
if(ql<=l&&r<=qr) return t[y].sum-t[x].sum;
else{
int mid=(l+r)>>1,ans=0;
if(ql<=mid) ans+=query(t[x].l,t[y].l,l,mid,ql,qr);
if(mid<qr) ans+=query(t[x].r,t[y].r,mid+1,r,ql,qr);
return ans;
}
}
int main(){
int t,m,n,q;
t=read();
while(t--){
memset(pre,0,sizeof(pre));
memset(last,0,sizeof(last));
memset(root,0,sizeof(root));
n=read(); m=read();
for(int i=1;i<=n;i++)
fa[i]=i;
for(int i=1;i<=m;i++){
int a=read(),b=read();
Union(a,b);
}
for(int i=1;i<=n;i++) find(i);
for(int i=1;i<=n;i++){
pre[i]=last[fa[i]];
last[fa[i]]=i;
}
for(int i=1;i<=n;i++){
root[i]=root[i-1];
update(pre[i],root[i],0,n);
}
q=read();
for(int i=1;i<=q;i++){
int ql=read(),qr=read();
printf("%d\n",query(root[ql-1],root[qr],0,n,0,ql-1));
}
}
return 0;
}