- 博客(407)
- 收藏
- 关注
原创 力扣经典算法篇-24-合并两个有序链表(迭代遍历,递归)
/ 链表节点int val;val = x;链表构建过程示例:(如上示例1)// 构建链表1// 构建链表2// 调用合并方法// 遍历打印= null) {
2025-07-15 20:05:41
268
原创 力扣经典算法篇-23-环形链表(哈希映射法,快慢指针法)
int val;// 节点的值// 下一个节点val = x;构建链表的方式示例:(如上示例1,[3,2,0,-4]的链表构建过程)// 创建节点// 3// 2// 0// -4// 构建链表顺序和环// 环:-4 → 2。
2025-07-14 09:18:01
368
原创 力扣经典算法篇-22-三数之和(固定一端+双指针法)
给你一个整数数组 nums ,判断是否存在三元组 [nums[i], nums[j], nums[k]] 满足 i!= k ,同时还满足 nums[i] + nums[j] + nums[k] == 0。不同的三元组是 [-1,0,1] 和 [-1,-1,2]。输入:nums = [-1,0,1,2,-1,-4]输出:[[-1,-1,2],[-1,0,1]]向阳出发,Dare To Be!输入:nums = [0,1,1]输入:nums = [0,0,0]输出:[[0,0,0]]
2025-07-14 09:17:21
390
原创 力扣经典算法篇-21- 两数之和 II - 输入有序数组(固定一端 + 二分查找法,双指针法)
如果设这两个数分别是 numbers[index1] 和 numbers[index2] ,则 1 <= index1 < index2 <= numbers.length。我们可以采取固定一端的思路,如:第一个元素固定,在剩余的元素中通过二分查找,快速找到与第一个元素相加刚好等于目标值的第二个元素。以长度为 2 的整数数组 [index1, index2] 的形式返回这两个整数的下标 index1 和 index2。因此 index1 = 1, index2 = 2。返回 [1, 2]。
2025-07-13 14:09:42
353
原创 力扣经典算法篇-20-盛最多水的容器(双指针法)
1、题干给定一个长度为 n 的整数数组 height。有 n 条垂线,第 i 条线的两个端点是 (i, 0) 和 (i, height[i])。找出其中的两条线,使得它们与 x 轴共同构成的容器可以容纳最多的水。返回容器可以储存的最大水量。输入:[1,8,6,2,5,4,8,3,7]输出:49解释:图中垂直线代表输入数组 [1,8,6,2,5,4,8,3,7]。在此情况下,容器能够容纳水(表示为蓝色部分)的最大值为 49。输入:height = [1,1]输出:1。
2025-07-13 13:29:50
210
原创 力扣经典算法篇-19-判断子序列(双指针法,双指针递归法,批量校验时的进阶解法(预处理+二分查找))
如果不相等,s不变,t移除首元素,取各自剩余的部分继续上诉递归处理;之后逐个比较s串,分别校验s的每一个字符是否存在t中的对应的列表;当然即使存在了,也要进一步校验是否满足,譬如上一个元素已经对应t的位置3了,下一个元素匹配的位置确是2,这肯定也不行。最终查看s的指针有没有滑动到最后的位置,到了最后,说明s已经被全包含了。分别比较两个指针位置的元素值是否相等,如果相等两个指针同时右移,如果不相等仅t的指针右移即可。使用两个指针,第一个指针指向字符串s的其实位置,第二个指针指向t的起始位置。
2025-07-13 11:35:20
284
原创 Mysql-场景篇-1-数据表中敏感字段已经加密存储,如何进行模糊查询?(SQL层解密在模糊查询,分片加密处理)
安全性:虽然这种方法简单易用,但在生产环境中直接在SQL脚本中硬编码密钥可能会带来安全风险。建议采用更加安全的方式来管理和保护你的密钥。性能:对大量数据进行解密可能会影响查询性能。如果可能的话,尽量减少需要解密的数据量,或者考虑使用索引优化查询。字符集问题:由于AES加密/解密的结果是二进制数据,因此在处理时需要注意字符集问题。确保在解密后正确地转换为所需的字符集格式。这个方法适用于中小规模的应用场景。对于大规模应用或对安全性有更高要求的情况,建议探索数据库提供的其他安全功能或第三方安全解决方案。
2025-07-11 11:59:35
1082
原创 人工智能-基础篇-29-什么是低代码平台?
低代码平台是一种软件开发环境,允许用户通过图形化界面(如拖拽组件、配置属性)和少量代码(如自定义逻辑)快速构建应用。可视化开发:通过拖拽组件(如按钮、表单、图表)设计界面,无需编写复杂代码。预置组件与模板:提供丰富的模块化组件和行业模板,加速应用开发。快速迭代:支持敏捷开发,应用可随时调整和优化。灵活扩展:允许通过少量代码或插件满足深度定制需求。全生命周期管理:覆盖设计、开发、测试、部署、运维的全流程。起源于第四代编程语言(4GL)和快速应用开发(RAD)工具。
2025-07-10 22:36:52
646
原创 人工智能-基础篇-28-模型上下文协议--MCP请求示例(JSON格式,客户端代码,服务端代码等示例)
"protocol": "MCP", // 表示使用的协议是MCP(Model Calling Protocol)"version": "1.0", // 当前使用的MCP版本为1.0"request_id": "abc123", // 请求的唯一标识符,便于后续追踪和关联请求/响应。"timestamp": 1720000000, // 时间戳,表示请求发送的时间(单位:秒)"context": { // 会话上下文信息。
2025-07-10 22:20:14
508
原创 人工智能-基础篇-27-模型上下文协议--MCP到底怎么理解?对比HTTP的区别?
MCP = 让AI拥有“自动调用工具”的能力。就像手机里的“语音助手”不仅能听懂你的话,还能自动帮你打开应用、查天气、定闹钟一样,MCP是AI的“工具调用协议”,让AI能直接调用各种工具(比如数据库、代码、API)完成任务。
2025-07-09 23:07:20
1676
原创 人工智能-基础篇-26-模型上下文协议--MCP是什么?
《MCP:大语言模型的"USB接口"协议》摘要 Anthropic公司提出的模型上下文协议(MCP)旨在标准化大语言模型与外部系统的交互,类比为AI领域的"USB接口"。其核心架构包含宿主、客户端和服务器三部分,支持本地/远程资源调用,实现自然语言指令到具体操作的无缝转换。典型应用包括智能开发(Cursor编辑器)、企业知识管理、跨平台智能体(地图/支付服务)等。MCP显著降低集成成本,但面临标准化推广、性能优化等挑战。随着生态扩展(已接入支付宝、腾讯等),MCP有望
2025-07-09 12:50:05
949
原创 人工智能-基础篇-25-认识一下LLM开发应用框架--LangChain
定位:LangChain是一个LLM编程框架,提供从数据预处理到模型部署的全流程工具链。目标:降低LLM应用开发门槛,使开发者能够专注于业务逻辑而非底层技术细节。核心理念:数据感知:将LLM连接到外部数据源(如数据库、API、文档)。自主性:允许LLM与其环境交互(如调用工具、执行任务)。LangChain正在成为构建LLM应用的标准工具链,其灵活性和生态兼容性使其在AI领域具有广泛的应用前景。
2025-07-08 23:33:41
1365
原创 人工智能-基础篇-24-RAG和LLM到底怎么理解和区分?(LLM是深度训练的大语言生成模型,RAG是LLM更智能的补充技术)
定义:大型语言模型(LLM)是一种生成模型,LLM是基于海量文本数据训练的深度学习模型(如GPT、BERT),能够根据输入的提示或查询生成相关的文本内容。原理:预训练:在大规模语料库上学习语言模式(如语法、语义)。推理阶段:根据输入上下文预测下一个词(或token),逐步生成文本。特点:依赖静态的预训练知识库,无法动态更新外部信息。LLM是一个强大的工具,能够快速生成针对用户查询的回应,但它受限于训练数据的时间点和范围。
2025-07-08 23:25:05
984
原创 人工智能-基础篇-23-智能体Agent到底是什么?怎么理解?(智能体=看+想+做)
智能体是人工智能的一个应用形式。人工智能 = 让机器聪明的所有技术的总和。(技术)智能体 = 这些技术造出来的“聪明小助手”。(产品)智能体就是能自己看、自己想、自己干、自己学的“数字员工”或“虚拟助手”,它让机器更像人,能帮我们完成复杂任务,甚至比人做得更快、更准!向阳而生,Dare To Be!!!
2025-07-07 23:47:31
778
原创 人工智能-基础篇-22-什么是智能体Agent?(具备主动执行和调优的人工智能产物)
Agent智能体(AI Agent)是一种能够感知环境、自主决策并执行任务的软件或硬件实体。它以大语言模型(LLM)为核心,结合规划、记忆、工具调用等模块,实现复杂任务的自动化处理。马文·明斯基(Marvin Minsky):最早提出“Agent”概念,认为其具备社会交互性和智能性。《人工智能:一种现代方法》:定义为“通过传感器感知环境,并通过执行器对环境采取行动的实体”。OpenAI:强调Agent以LLM为大脑,具备自主理解、规划、记忆和工具使用能力。
2025-07-07 23:22:06
614
原创 人工智能-基础篇-21-怎么理解大模型的训练和知识库的检索?(训练用来提升大模型的理解和推理能力,知识用来提供标准答案)
训练:让模型具备“理解语言、生成内容”的能力,类似于培养一个知识渊博的“学霸”。知识库:为模型提供“最新、最准确的外部信息”,相当于给学霸一本随时可查的参考书。结合方式:通过RAG等技术,让模型在回答问题时先查书(知识库),再组织答案,避免胡编乱造。训练是教学生考试技巧和基础知识,而知识库是考试时允许查阅的资料。学生(模型)需要先学会如何学习和思考(训练),再学会如何高效利用资料(RAG)。训练让模型“能听懂”,知识库让模型“能说准”,两者的结合让大模型既聪明又可靠。
2025-07-06 01:01:23
539
原创 人工智能-基础篇-20-如何搭建一个人工智能知识库?
《企业知识库建设全流程指南》摘要: 本文系统梳理了知识库建设的7大阶段:1)前期准备需明确目标、功能需求(版本控制/权限管理等)并组建跨部门团队;2)技术选型推荐开源工具(PingCode/HelpLook)或商业方案,设计分类体系与向量数据库架构;3)内容建设涵盖数据采集清洗、文本分块(LangChain分块示例)和向量化处理(FAISS/HuggingFace);4)提供基于LangChain的Python实现代码;5)部署支持私有化/云端方案,集成API与移动端;6)上线后需持续测试优化,定期更新内容
2025-07-06 00:53:07
997
原创 人工智能-基础篇-19-大模型和知识库的结合可以怎么理解?(RAG框架怎么认识和理解?)
大模型 + 知识库 = 会说话的数据库就像给一个“机器人”装上嘴巴,让它能根据你的资料库回答问题。类比:如果把大模型比作“厨师”,知识库就是“食材库”。厨师(大模型)需要从食材库(知识库)里挑选合适的材料(信息),才能做出一道好菜(准确回答)。通过这种结合,企业和个人可以快速搭建一个既专业又智能的问答系统,既能避免大模型“胡说八道”,又能高效利用自己的私有数据。向阳而生,Dare To Be!!!
2025-07-05 13:37:16
840
原创 人工智能-基础篇-18-什么是RAG(检索增强生成:知识库+向量化技术+大语言模型LLM整合的技术框架)
RAG是连接大语言模型与外部知识世界的桥梁,通过“检索 + 生成”的协同,解决了LLM的知识局限性和幻觉问题。通过这种架构,不仅可以提供更加准确的回答,还能显著提高系统的灵活性和可维护性。RAG已成为企业级AI应用的核心技术(如AWS Bedrock、Azure Databricks的RAG解决方案),并在医疗、金融、教育等领域发挥重要作用。随着多模态处理和智能体架构的发展,RAG将进一步推动AI系统向更智能、更高效的混合式系统演进。向阳而生,Dare To Be!!!
2025-07-05 13:23:54
1068
原创 Java WEB技术-什么是循环依赖?常用解决循环依赖的方法有哪些?(Spring三级缓存,@Lazy注解,设计修改,依赖解耦等)
循环依赖是指多个对象相互依赖形成闭环,常见于Spring框架中。产生原因包括业务逻辑设计不合理和框架特性使用不当。解决方案主要有:1)重构代码,引入中间类打破循环;2)使用Spring的Setter注入,利用三级缓存机制解决;3)通过@Lazy注解延迟加载;4)优化设计,如事件驱动或依赖注入调整。其中重构代码和使用Setter注入是推荐方案,而@Lazy注解仅适用于简单场景。合理设计类结构是避免循环依赖的根本方法。
2025-07-04 14:16:06
1158
原创 人工智能-基础篇-17-知识库、向量数据库和大模型,三者的关系和理解
知识库是存储结构化和非结构化数据(如PDF)的仓库;向量数据库将知识库内容转化为向量并高效检索;大模型负责理解用户需求,并基于检索到的向量内容生成自然语言回答。知识库是“资料”,向量数据库是“把资料变形成可以高效查找的形式”,大模型是“看懂问题+看懂资料+组织答案”。三者结合(即RAG技术)让AI系统既能“理解”用户意图,又能“引用”真实知识,从而提供准确、可靠、动态的答案。向阳而生,Dare To Be!!!
2025-07-04 12:46:50
1151
原创 人工智能-基础篇-16-什么是向量数据库?(向量是什么?向量数据库的作用)
向量数据库主要用于处理高维向量数据的存储和检索任务,而知识库则是企业内部信息的重要载体。*两者结合起来,可以极大地提升AI系统的性能,特别是在需要快速定位相关信息并生成高质量回复的应用场景中。这种组合使得AI不仅能理解用户的意图,还能根据最新、最权威的知识提供精准的答案。将结构化和非结构化数据转化为向量后,通过语义相似性搜索,解决传统数据库无法处理的模糊匹配问题。向量数据库是知识库的一种高效存储和检索方式,尤其适合需要语义匹配的场景(如RAG、推荐系统)。
2025-07-03 13:13:06
937
原创 人工智能-基础篇-15-知识库的作用和具体表现形式
知识库是让AI更靠谱、更专业、更懂业务的秘密武器。知识库的作用:无论是企业内部提效、客户服务降本,还是赋能AI系统,知识库的核心价值都是让知识流动起来。内容形式灵活多样:可以是PDF、数据库、视频甚至API接口,关键在于结构化存储和精准检索。与大模型结合:知识库为大模型提供实时、准确的外部信息,解决“幻觉”问题,是RAG(检索增强生成)技术的核心组件。向阳而生,Dare To Be!!!
2025-07-03 13:05:05
809
原创 人工智能-基础篇-14-知识库和知识图谱介绍(知识库是基石、知识图谱是增强语义理解的知识库、结构化数据和非结构化数据区分)
知识库是基础的数据存储工具,适合结构化、静态的知识管理;知识图谱是更高级的知识表示形式,通过图结构和语义关系支持复杂推理;两者的融合:现代AI系统常将两者结合,例如用知识图谱增强知识库的语义能力,同时用知识库支撑图谱的底层数据。有固定格式,能以字符表示,且能够被人类直接阅读和理解的数据,都属于结构化数据。如:Java中的字符串、JSON对象、CSV中的行等。没有固定格式或结构,内容无法直观提取信息,通常以字节流形式存储的数据,都属于非结构化数据。
2025-07-02 22:23:46
889
原创 人工智能-基础篇-13-基础应用篇-2~~模型项目开发流程--从0到1创建类似DeepSeek语言模型,应该怎么做?
《构建大规模语言模型的完整流程指南》摘要:本文系统介绍了开发类似DeepSeek的大规模语言模型的全流程。从前期明确应用场景、组建跨学科团队、准备GPU集群等硬件资源开始;到数据收集清洗、Transformer架构设计、分布式训练优化等核心技术环节;再到模型评估、RLHF对齐、API部署等后期工作。特别强调了多语言支持、伦理合规等关键考量,并提供了从零搭建对话系统的完整示例。整个流程需要机器学习工程师、数据科学家、软件开发者等专业团队的协同合作,以及持续迭代优化的长期投入。
2025-07-02 11:29:25
367
原创 人工智能-基础篇-12-基础应用篇~~基于市场已有DeepSeek模型,如何快速集成到企业应用?
简单体验:直接使用Ollama本地部署DeepSeek模型(无需编程基础)。企业级应用:通过Azure或腾讯云部署,结合API集成到业务系统。深度定制:需联系DeepSeek官方获取私有化模型并进行微调(需商业合作)。上述通过命令ollama pull deepseek-r1:7b拉取的DeepSeek模型,是通过Ollama这个工具从模型仓库中下载指定版本的DeepSeek模型。
2025-07-01 10:13:53
770
原创 人工智能-基础篇-11-自注意力机制深度学习模型~~Transformer
Transformer是一种基于自注意力机制(Self-Attention)的深度学习模型架构,由Google团队于2017年在论文《Attention is All You Need》中提出。其核心思想是完全摒弃传统的循环神经网络(RNN)和卷积神经网络(CNN),通过自注意力机制捕捉序列中元素之间的全局依赖关系,从而实现高效并行化计算。Transformer是人工智能领域的革命性架构,其核心价值在于全局依赖建模和高效并行化。
2025-07-01 10:04:43
1834
原创 人工智能-基础篇-10-什么是卷积神经网络CNN(网格状数据处理:输入层,卷积层,激活函数,池化层,全连接层,输出层等)
CNN是一种特殊的深层神经网络,它通过使用局部感知区域和共享权重来减少参数数量,从而有效地处理高维数据(如图像,音频,视频等)。卷积神经网络通过仿生视觉机制和深度学习,彻底改变了图像处理领域,成为人工智能的核心技术之一。从LeNet到ResNet的演进,再到跨领域的广泛应用,CNN持续推动着医疗、自动驾驶、安防等行业的革新。尽管存在局限性,但其强大的特征提取能力和灵活的架构设计使其在未来仍将是深度学习的重要基石。向阳而生,Dare To Be!!!
2025-06-30 11:01:06
996
原创 人工智能-基础篇-9-深度学习编程工具库(PyTorch/TensorFlow框架)
无论选择哪一个框架,掌握其核心概念和技术细节都将有助于你更好地理解和应用深度学习技术。如果你更关注研发效率,倾向于快速迭代和尝试新想法,那么PyTorch可能是更好的选择,尤其是对于学术界和初创公司而言。如果你的目标是产品化,特别是涉及跨平台部署或需要较高的稳定性和可维护性,TensorFlow及其相关工具链则更为合适。向阳而生,Dare To Be!!!
2025-06-30 10:39:29
1091
原创 人工智能-基础篇-8-基础硬件GPU和TPU(什么是GPU和TPU,它们和CPU的区别,它们在人工智能领域的作用等)
起源:最初为加速计算机图形渲染(如游戏、3D建模)而设计,由于其高度并行化的架构,GPU也被广泛应用于科学计算、数据分析以及机器学习等领域。架构特点:大规模并行计算:包含数千个小型核心(如NVIDIA的CUDA核心),可同时处理大量数据。高内存带宽:GPU配备了专门的高速GDDR内存,能够快速传输大量数据。灵活性:支持多种计算任务(图形渲染、科学计算、深度学习等),兼容主流框架(如PyTorch、TensorFlow)。
2025-06-29 16:00:05
845
原创 人工智能-基础篇-7-什么是大语言模型LLM(NLP重要分支、Transformer架构、预训练和微调等)
大型语言模型是指那些拥有数亿到数千亿参数的深度学习模型。这些模型基于神经网络架构,尤其是Transformer架构,能够在广泛的文本数据集上进行预训练。预训练的目标是让模型学习到语言的一般规律,包括语法、语义以及上下文理解能力。之后,可以通过微调(fine-tuning)使模型适应特定的任务或领域。大语言模型正从“技术奇观”转向“基础设施”,其核心价值在于将语言转化为智能生产力。未来,LLM将更高效、更安全、更普惠,但也需平衡创新与风险。
2025-06-29 15:52:26
937
原创 人工智能-基础篇-6-什么是生成式AI(生成式人工智能,GAI)
生成式AI是人工智能从“理解世界”到“创造世界”的关键跃迁,其核心技术(如GAN、扩散模型、大语言模型)已广泛应用于内容创作、医疗、金融、教育等领域。然而,技术的双刃剑效应也带来了隐私、伦理和就业等问题。未来,随着政策规范和技术伦理的完善,生成式AI将更安全、高效地服务于社会,成为推动数字化转型的核心动力。向阳而生,Dare To Be!!!
2025-06-28 01:22:01
610
原创 人工智能-基础篇-5-常用的两种建模方式(判别式模型和生成式模型)
判别式和生成式建模是机器学习的核心方法论。深度学习是实现这两种建模最常用的方式。通过不同的网络结构和训练策略,能够灵活实现这两种建模方式。判别式模型:主要用于分类和回归任务,直接学习如何根据输入特征预测输出标签。深度学习提供了强大的工具(如CNN、RNN等)来构建复杂的判别式模型,这些模型可以在大量数据上进行训练并取得优异性能。生成式模型:不仅限于分类任务,还可以用于生成新数据、密度估计等。
2025-06-28 01:08:09
1071
原创 人工智能-基础篇-4-人工智能AI、机器学习ML和深度学习DL之间的关系
人工智能(Artificial Intelligence, AI)是最广泛的上层概念,目标是让机器模拟人类智能行为(如感知、推理、学习、决策、创造等),涵盖所有与智能相关的技术。AI是一个广泛的领域,它涵盖了所有旨在模仿或超越人类智能行为的尝试和技术。AI不仅限于软件实现,也包括硬件机器人和其他形式的人工智能系统。AI是终极目标:让机器模拟人类智能。ML是实现AI的关键手段:通过数据驱动替代硬编码规则。DL是ML的强力工具:自动提取特征,推动AI在复杂任务中的突破。
2025-06-27 23:15:38
1123
原创 人工智能-基础篇-3-什么是深度学习?(DL,卷积神经网络CNN,循环神经网络RNN,Transformer等)
深度学习(Deep Learning, DL)是机器学习(ML)领域的一个重要分支,它通过构建和训练深层神经网络模型,使机器能够从数据中自动学习特征表示,并完成复杂模式的识别任务。其核心目标是模拟人类大脑的层次化信息处理机制,解决传统机器学习方法难以处理的非结构化数据问题(如图像、语音、文本)。深度学习是推动现代人工智能发展的核心技术,通过深层神经网络模拟人脑的信息处理机制,在图像识别、自然语言处理、科学研究等领域取得突破性进展。
2025-06-27 23:03:23
986
原创 人工智能-基础篇-2-什么是机器学习?(ML,监督学习,半监督学习,零监督学习,强化学习,深度学习,机器学习步骤等)
机器学习(Machine Learning, ML)是人工智能的一个分支,是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析等数学理论。其核心目标是让计算机通过分析数据,自动学习规律并构建模型,从而对未知数据进行预测或决策,而无需依赖显式的程序指令。通过数据驱动的方式,使系统能够从经验(数据)中改进性能,形成对数据模式的抽象化表达。模型:模型是对现实世界现象的一种抽象表示,用于描述输入数据和输出结果之间的关系。训练:使用特定算法调整模型参数的过程,目的是最小化模型在给定数据集上的误差。
2025-06-27 22:37:17
657
原创 人工智能-基础篇-1-人工智能介绍(发展史,技术体系,技术基础,主要领域,前景和挑战)
人工智能(Artificial Intelligence, AI)是计算机科学的一个分支,旨在创建能够执行通常需要人类智能的任务的软件系统。这些任务包括但不限于学习、推理、解决问题、知识表示、规划、导航、自然语言处理、模式识别和感知等。本质:通过计算机系统模拟人类智能行为(如学习、推理、感知、决策),使机器能够以类似人类的方式做出反应。目标:生产出能够完成复杂任务的智能机器,甚至在某些领域超越人类智能。人工智能是21世纪最具颠覆性的技术之一,其核心在于通过数据驱动和算法创新赋予机器“智能”。
2025-06-27 22:26:37
1332
原创 Python基础--4--Python常用代码示例
示例:使用requests获取百度首页内容,并保存为baidu.html。示例:将字典转为 JSON 字符串,并保存到文件。示例:使用Pandas读取CSV并筛选数据。示例:使用threading启动多个线程。示例:创建目录、列出目录下所有文件。向阳而生,Dare To Be!示例:发送GET请求获取网页内容。示例:获取当前时间并格式化输出。示例:查看指定目录下的所有文件。示例:从字符串中提取邮箱地址。示例:定义一个简单的装饰器。示例:记录程序运行日志。
2025-06-23 16:30:45
723
原创 Python基础--3--Python对比Java
以打印"Hello World"为例。Python语法更简洁,适合快速开发;Java更严谨,适合大型项目。性能较好类型安全,减少错误企业级开发首选支持跨平台语法繁琐开发效率低学习曲线陡峭语法简单、易学开发效率高生态丰富(AI、数据分析、自动化)社区活跃执行速度慢不适合大规模并发任务类型不明确,容易出错。
2025-06-23 16:19:14
386
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人