推荐算法如何做多目标优化


推荐系统中如果只优化ctr,那么有很多已有的ctr预估模型可以做。但是往往一个优秀的推荐系统除了ctr外还有很多优化的目标,比如观看时长、收藏率、转发率等,那么能训练一个模型,对多个目标同时优化呢。
本文将总结一些该方面的成果和实践

阿里 ESMM

论文名:Entire Space Multi-Task Model: An Effective Approach for Estimating Post-Click Conversion Rate

CVR 是指从点击到购买的转化,传统的 CVR 预估会存在两个问题:样本选择偏差和稀疏数据
(1)样本选择偏差:模型用用户点击的样本来训练,但是预测却是用的整个样本空间。
(2)数据稀疏问题:用户点击到购买的样本太少。
阿里提出了 ESMM 模型来解决上述两个问题:主要借鉴多任务学习的思路,引入两个辅助的学习任务,分别用来拟合 pCTR 和 pCTCVR。
在这里插入图片描述
该网络结构共有三个子任务,分别用于输出 pCTR、pCVR 和 pCTCVR
在这里插入图片描述
由上面的式子可知,pCVR 可通过 pCTR 和 pCTCVR 推导出来,那么我们只需要关注 pCTR 和 pCTCVR 两个任务即可

对于 pCTR 来说可将有点击行为的曝光事件作为正样本,没有点击行为的曝光事件作为负样本,对于 PCTCVR 来说,将同时有点击行为和购买行为的曝光事件作为正样本,其他作为负样本。
模型的 loss 函数:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值