[个人笔记]吴恩达深度学习L3 W2:机器学习策略(2)(ML Strategy (2))

迁移学习是一种将预先在任务甲(如猫狗识别)中学到的网络参数应用于任务乙(如放射科图像分类)的技术。通过微调网络的最后一层或全部层,利用已学习到的底层特征,提高新任务的性能。这种方法尤其在数据量有限时有效,因为它利用了从大量数据中学习到的通用特征。例如,训练好的小爱同学模型只需调整最后一层就能适用于识别‘Hey Siri’的指令。迁移学习在图像识别、语音处理等多个领域都有广泛应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

http://www.ai-start.com/dl2017/html/lesson3-week2.html#header-n125

2.7 迁移学习(Transfer learning)

迁移学习:把网络从任务甲中学的的知识(参数)用于任务乙。

举例:已经训练好一个识别猫和狗(任务甲)的网络,现在想做X射线扫描图分类(任务乙)

操作:
首先完全重新初始化最后一层,然后开始训练:
如果你的放射科数据集很小,你可能只需要重新训练最后一两层的权重,就是和并保持其他参数不变。
如果你有足够多的数据,你可以重新训练神经网络中剩下的所有层。

两个概念:之前的猫狗识别任务的训练叫做“预训练pre-training”, 后来放射科的训练叫做"微调(fine tuning)"

为什么这样有用呢?
不同任务,比如任务甲图像识别和任务乙放射科诊断,共享很多低层次特征,比如说边缘检测、曲线检测、阳性对象检测(positive objects)。 算法从一个任务中,可以了解不同图像的组成部分是怎样的,学到线条、点、曲线这些知识,也许对象的一小部分,这些知识有可能帮助你的另一个任务。

另一个例子:
语音处理。已经训练好小爱同学,那么hey siri只需修改最后一层即可。

迁移学习有用的场合:
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值