宋浩线性代数笔记

Miao-A-SongHao-Linear-Algebra-Notes


bilibili 宋浩老师 “惊叹号” 系列 《线性代数》网课 笔记及时间点目录
Github项目地址:https://github.com/cy69855522/Miao-A-SongHao-Linear-Algebra-Notes

💡 前言

  • 我发现吧,线代没记笔记真不行。
  • 浩浩学习,天天向上。数学网课推荐🤭宋浩老师免费视频~~~ 此笔记与其线代网课相对应
  • 如有遗漏或错误欢迎评论~ 欢迎补充完善Github项目⛄~
  • PC端推荐使用【Ctrl】+【F】进行关键字定位

⚗ 线性代数

文章目录

☄ P1 二阶三阶行列式

⌚ 02:48 二阶行列式划线计算

  • 行列式一定是方的

⌚ 15:00 三阶行列式划线计算

  • 主对角线:╲
  • 副对角线:╱

⌚ 22:29 N阶行列式预备知识

  • 排列:1,2,……,n组成的一个有序数组叫n级排列,中间不能缺数
    • 3级排列:123,132,213,231,312,321
  • 逆序:大数排在小数前面
  • 逆序数:逆序的总数
  • 奇/偶排列:逆序数为奇/偶
  • 标准排列:123……N
  • 对换:交换排列中的两个数
    • 做一次对换,排列奇偶性改变

⌚ 24:21 名场面:宋浩点名田莎莎等

☄ P2 n阶行列式

⌚ 00:55 N阶行列式计算

  • 按行展开:
    • 行标取标准排列
    • 列标取排列的所有可能,从不同行不同列取出n个元素相乘
    • 共有N!项
    • 每一项的符号由列标排列的奇偶性决定,偶正奇负

⌚ 20:50 下三角行列式

  • 右上方三角形区域元素全部为0
  • 下三角行列式 = 主对角线元素相乘

⌚ 23:14 上三角行列式

  • 左下方三角形区域元素全部为0
  • 上三角行列式 = 主对角线元素相乘

⌚ 24:40 对角线行列式

  • 只有主对角线上有数

⌚ 25:30 副对角线行列式

  • 副对角线行列式 = (-1)^(n(n-1)/2) * 副对角线元素相乘

⌚ 31:00 三角行列式总结

在这里插入图片描述

⌚ 31:09 行列式三种定义

  • 1.按行展开,符号由列标排列决定
  • 2.按列展开,符号由行标排列决定
  • 3.胡乱展开,符号由行标排列逆序数和列标排列逆序数之和决定 (-1)^(N(i1,i2,……,iN)+N(j1,j2,……,jN)), i:行标,j:列标

☄ P3 行列式的性质

  • 行列式对行成立的性质对列也成立

⌚ 00:25 性质一 转置

  • 转置:把行按列写
  • 行列式转置后值不变
  • 行列式转置的转置等于本身

⌚ 11:48 性质二 两行互换

  • 行列式两行互换,值变号

⌚ 20:38 性质三 两行相同

  • 行列式两行相同,等于0

⌚ 23:10 性质四 行公因子k

  • 行列式某行都乘以k,等于用k乘以这个行列式。即行列式某一行有公因子k,可往外提一次
  • 若行列式所有元素都有公因子k,k外提N次

⌚ 28:05 性质五 两行成比例

  • 行列式两行成比例,则行列式值为0
  • 某一行全为0,则行列式为0

⌚ 34:20 性质六 和分解

  • 若行列式某一行元素都可以表示为两项和,则行列式等于两个行列式相加
    | 1+2 2+3 |   | 1 2 |   | 2 3 |
    | 3   3   | = | 3 3 | + | 3 3 |
    | 4   6   |   | 4 6 |   | 4 6 |
    

⌚ 43:36 性质七 行叠加

  • 某一行乘以一个数加到另一行上去,行列式值不变

⌚ 51:12 行列式值计算通用法

  • 将行列式化为上三角行列式,连乘对角线元素
    • 利用性质七将左下角元素从左到右从上到下消为0

☄ P4 行列式按行展开

⌚ 04:36 余子式

  • 在行列式中选中某个元素,去掉所在行列,剩余的元素构成的行列式叫这个元素的余子式M_ij,M代表余子式,i代表选中元素的行标,j列标,ij从1开始

⌚ 07:42 代数余子式

  • 在余子式前面加上符号(-1)^(i+j)

⌚ 09:38 降阶:行列式按某一行/列展开

  • 行列式的值 = 某一行所有元素乘以自己的代数余子式的积之和,列同理

⌚ 16:50 异乘变零定理

  • 某行元素与另一行元素的代数余子式乘积之和为零

⌚ 27:17 拉普拉斯定理

  • k阶子式:任取k行k列,交叉处构成的行列式为k阶子式
  • k阶子式的余子式:除去选中行列,其余行列形成的子式为k阶子式的余子式
  • k阶子式的代数余子式:多个符号(-1)^所有行标与列标之和

⌚ 30:17 拉普拉斯展开定理

  • 取定k行,由k行元素组成的所有k阶子式与其代数余子式乘积之和 = 行列式值

⌚ 38:30 同阶行列式相乘

  • 同阶行列式相乘的值 = 两个行列式做矩阵乘法后得到的行列式的值

☄ P5 行列式的计算(一)

⌚ 14:33 纯数字行列式计算

  • 将行列式化为上三角行列式,连乘对角线元素

⌚ 21:50 已知行列式求余子式之和

  • 构造新行列式

⌚ 30:06 对角线为x,其余为a的行列式计算技巧

☄ P6 行列式的计算(二)

⌚ 00:00 行列式计算基础思路

  • 1.化成上三角
  • 2.把某行/列尽可能多得化成0,然后展开

⌚ 01:05 三叉形行列式

  • 加边法:在顶上加一行1,左边多出的一列(除第一行)为0,行列式值不变

⌚ 17:42 范德蒙德行列式

⌚ 40:42 反对称行列式

  • a_ij = -a_ji
  • 主对角线全为0
  • 上下位置对应成相反数
  • 奇数阶,行列式值 D = 0

⌚ 43:12 对称行列式

  • a_ij = a_ji
  • 主对角线无要求
  • 上下位置对应相等

☄ P7 克莱姆法则

⌚ 00:05 解方程组

  • n个方程,n个未知量
  • D ≠ 0
  • x_j = D_j / D,D为方程组系数构成的行列式,D_j代表把方程组值用于替换D的第j列得到的行列式,x_j代表解
    在这里插入图片描述

⌚ 09:11 解齐次线性方程组

  • n个方程,n个未知量
  • 齐次:方程组值都为0,即无常数
  • 齐次方程,至少有零解
  • 若 D ≠ 0,只有零解;若 D = 0 <=> 有非零解
    在这里插入图片描述

☄ P8 矩阵概念

⌚ 22:20 矩阵和行列式比较

  • 矩阵可以是不方的
  • 零矩阵:元素都是0的矩阵为零矩阵(有形状)
  • 负矩阵:A的负矩阵为-A,所有元素取相反数
  • 方阵:行数 = 列数
  • 单位阵E:对角线上为1,其余元素为0,一定为方阵
  • 同型矩阵:形状相同
  • 矩阵相等:同型且值对应相等
    • 零矩阵不一定相等
  • 方阵的主对角线:╲,次对角线:╱,不是方阵则没有

☄ P9 矩阵运算(一)

⌚ 00:00 名场面:宋浩免费赠送自制知识卡片

⌚ 02:50 矩阵加减法

  • 只有同型矩阵才能相加减
  • 对应元素相加减

⌚ 07:53 矩阵数乘运算

  • 用k乘以矩阵,相当于把k乘以矩阵所有元素
    • 矩阵所有元素均有公因子,公因子外提一次(行列式是n次)

⌚ 13:58 矩阵乘法

  • 前提:左矩阵列数 = 右矩阵行数
  • 结果矩阵的行数 = 左矩阵行数,列数 = 右矩阵列数
  • 结果矩阵第i行第j列的值 = 左矩阵第i行与右矩阵第j列对应元素乘积之和
  • 宋氏七字:中间相等,取两头
  • AB 一般≠ BA AB有意义,BA不一定有意义。若AB = BA,则称A,B可交换
  • 左乘:在矩阵左边乘上一个矩阵,右乘同理
  • AB = 0 ≠> A=0 或 B=0
  • AB = AC,A≠0 ≠> B=C
  • 与零矩阵左/右乘:零矩阵与任何矩阵相乘都为零矩阵
  • 与单位阵左/右乘:AE = A, EA = A,此时E的形状可能不同
  • (AB)C = A(BC),AB顺序不可变
  • (A + B)C = AC + BC,AB顺序不可变
  • k(AB) = (kA)B = A(kB)
评论 28
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值