Miao-A-SongHao-Linear-Algebra-Notes
bilibili 宋浩老师 “惊叹号” 系列 《线性代数》网课 笔记及时间点目录
Github项目地址:https://github.com/cy69855522/Miao-A-SongHao-Linear-Algebra-Notes
💡 前言
- 我发现吧,线代没记笔记真不行。
- 浩浩学习,天天向上。数学网课推荐🤭宋浩老师的免费视频~~~ 此笔记与其线代网课相对应
- 如有遗漏或错误欢迎评论~ 欢迎补充完善Github项目⛄~
- PC端推荐使用【Ctrl】+【F】进行关键字定位
⚗ 线性代数
文章目录
- Miao-A-SongHao-Linear-Algebra-Notes
- 💡 前言
- ⚗ 线性代数
-
- ☄ P1 二阶三阶行列式
- ☄ P2 n阶行列式
- ☄ P3 行列式的性质
- ☄ P4 行列式按行展开
- ☄ P5 行列式的计算(一)
- ☄ P6 行列式的计算(二)
- ☄ P7 克莱姆法则
- ☄ P8 矩阵概念
- ☄ P9 矩阵运算(一)
- ☄ P10 矩阵运算(二)
- ☄ P11 特殊矩阵
- ☄ P12 逆矩阵(一)
- ☄ P13 逆矩阵(二)
- ☄ P14 分块矩阵
- ☄ P15 初等变换(一)
- ☄ P16 初等变换(二)
- ☄ P17 初等变换(三)
- ☄ P18 矩阵的秩(一)
- ☄ P19 矩阵的秩(二)
- ☄ P20 向量的定义
- ☄ P21 向量间的线性关系(一)
- ☄ P22 向量间的线性关系(二)
- ☄ P23 线性相关线性无关
- ☄ P24 向量组的秩(一)
- ☄ P25 向量组的秩(二)
- ☄ P26 线性方程组
- ☄ P27 线性方程组有解判定
- ☄ P28 齐次方程组的解
- ☄ P29 方程组解的结构(一)
- ☄ P30 方程组解的结构(二)
- ☄ P32 矩阵的特征值与特征向量(一)
- ☄ P33 矩阵的特征值与特征向量(二)
- ☄ P34 特征值与特征向量的性质
- ☄ P35 相似矩阵和矩阵可对角化的条件
- ☄ P36 实对称矩阵的对角化(一)
- ☄ P37 实对称矩阵的对角化(二)
- ☄ P38 实对称矩阵的对角化(三)
- ☄ P39 二次型定义
- ☄ P40 二次型化标准型(配方法)
- ☄ P41 二次型化标准型(初等变换法和正交替换法)
- ☄ End 感谢宋老师~
- ☄ Appendix 浩浩卡片
☄ P1 二阶三阶行列式
⌚ 02:48 二阶行列式划线计算
- 行列式一定是方的
⌚ 15:00 三阶行列式划线计算
- 主对角线:╲
- 副对角线:╱
⌚ 22:29 N阶行列式预备知识
- 排列:1,2,……,n组成的一个有序数组叫n级排列,中间不能缺数
- 如
3级排列:123,132,213,231,312,321
- 如
- 逆序:大数排在小数前面
- 逆序数:逆序的总数
- 奇/偶排列:逆序数为奇/偶
- 标准排列:
123……N
- 对换:交换排列中的两个数
- 做一次对换,排列奇偶性改变
⌚ 24:21 名场面:宋浩点名田莎莎等
☄ P2 n阶行列式
⌚ 00:55 N阶行列式计算
- 按行展开:
- 行标取标准排列
- 列标取排列的所有可能,从不同行不同列取出n个元素相乘
- 共有N!项
- 每一项的符号由列标排列的奇偶性决定,偶正奇负
⌚ 20:50 下三角行列式
- 右上方三角形区域元素全部为0
- 下三角行列式 = 主对角线元素相乘
⌚ 23:14 上三角行列式
- 左下方三角形区域元素全部为0
- 上三角行列式 = 主对角线元素相乘
⌚ 24:40 对角线行列式
- 只有主对角线上有数
⌚ 25:30 副对角线行列式
- 副对角线行列式 =
(-1)^(n(n-1)/2) * 副对角线元素相乘
⌚ 31:00 三角行列式总结
⌚ 31:09 行列式三种定义
- 1.按行展开,符号由列标排列决定
- 2.按列展开,符号由行标排列决定
- 3.胡乱展开,符号由行标排列逆序数和列标排列逆序数之和决定
(-1)^(N(i1,i2,……,iN)+N(j1,j2,……,jN)), i:行标,j:列标
☄ P3 行列式的性质
- 行列式对行成立的性质对列也成立
⌚ 00:25 性质一 转置
- 转置:把行按列写
- 行列式转置后值不变
- 行列式转置的转置等于本身
⌚ 11:48 性质二 两行互换
- 行列式两行互换,值变号
⌚ 20:38 性质三 两行相同
- 行列式两行相同,等于0
⌚ 23:10 性质四 行公因子k
- 行列式某行都乘以k,等于用k乘以这个行列式。即行列式某一行有公因子k,可往外提一次
- 若行列式所有元素都有公因子k,k外提N次
⌚ 28:05 性质五 两行成比例
- 行列式两行成比例,则行列式值为0
- 某一行全为0,则行列式为0
⌚ 34:20 性质六 和分解
- 若行列式某一行元素都可以表示为两项和,则行列式等于两个行列式相加
| 1+2 2+3 | | 1 2 | | 2 3 | | 3 3 | = | 3 3 | + | 3 3 | | 4 6 | | 4 6 | | 4 6 |
⌚ 43:36 性质七 行叠加
- 某一行乘以一个数加到另一行上去,行列式值不变
⌚ 51:12 行列式值计算通用法
- 将行列式化为上三角行列式,连乘对角线元素
- 利用性质七将左下角元素从左到右从上到下消为0
☄ P4 行列式按行展开
⌚ 04:36 余子式
- 在行列式中选中某个元素,去掉所在行列,剩余的元素构成的行列式叫这个元素的余子式
M_ij,M代表余子式,i代表选中元素的行标,j列标,ij从1开始
⌚ 07:42 代数余子式
- 在余子式前面加上符号
(-1)^(i+j)
⌚ 09:38 降阶:行列式按某一行/列展开
- 行列式的值 = 某一行所有元素乘以自己的代数余子式的积之和,列同理
⌚ 16:50 异乘变零定理
- 某行元素与另一行元素的代数余子式乘积之和为零
⌚ 27:17 拉普拉斯定理
- k阶子式:任取k行k列,交叉处构成的行列式为k阶子式
- k阶子式的余子式:除去选中行列,其余行列形成的子式为k阶子式的余子式
- k阶子式的代数余子式:多个符号
(-1)^所有行标与列标之和
⌚ 30:17 拉普拉斯展开定理
- 取定k行,由k行元素组成的所有k阶子式与其代数余子式乘积之和 = 行列式值
⌚ 38:30 同阶行列式相乘
- 同阶行列式相乘的值 = 两个行列式做矩阵乘法后得到的行列式的值
☄ P5 行列式的计算(一)
⌚ 14:33 纯数字行列式计算
- 将行列式化为上三角行列式,连乘对角线元素
⌚ 21:50 已知行列式求余子式之和
- 构造新行列式
⌚ 30:06 对角线为x,其余为a的行列式计算技巧
☄ P6 行列式的计算(二)
⌚ 00:00 行列式计算基础思路
- 1.化成上三角
- 2.把某行/列尽可能多得化成0,然后展开
⌚ 01:05 三叉形行列式
- 加边法:在顶上加一行1,左边多出的一列(除第一行)为0,行列式值不变
⌚ 17:42 范德蒙德行列式
⌚ 40:42 反对称行列式
a_ij = -a_ji
- 主对角线全为0
- 上下位置对应成相反数
- 奇数阶,行列式值 D = 0
⌚ 43:12 对称行列式
a_ij = a_ji
- 主对角线无要求
- 上下位置对应相等
☄ P7 克莱姆法则
⌚ 00:05 解方程组
- n个方程,n个未知量
- D ≠ 0
- x_j = D_j / D,D为方程组系数构成的行列式,D_j代表把方程组值用于替换D的第j列得到的行列式,x_j代表解
⌚ 09:11 解齐次线性方程组
- n个方程,n个未知量
- 齐次:方程组值都为0,即无常数
- 齐次方程,至少有零解
- 若 D ≠ 0,只有零解;若 D = 0 <=> 有非零解
☄ P8 矩阵概念
⌚ 22:20 矩阵和行列式比较
- 矩阵可以是不方的
- 零矩阵:元素都是0的矩阵为零矩阵(有形状)
- 负矩阵:A的负矩阵为
-A
,所有元素取相反数 - 方阵:行数 = 列数
- 单位阵
E
:对角线上为1,其余元素为0,一定为方阵 - 同型矩阵:形状相同
- 矩阵相等:同型且值对应相等
- 零矩阵不一定相等
- 方阵的主对角线:╲,次对角线:╱,不是方阵则没有
☄ P9 矩阵运算(一)
⌚ 00:00 名场面:宋浩免费赠送自制知识卡片
- 已收集到电子版😎
⌚ 02:50 矩阵加减法
- 只有同型矩阵才能相加减
- 对应元素相加减
⌚ 07:53 矩阵数乘运算
- 用k乘以矩阵,相当于把k乘以矩阵所有元素
- 矩阵所有元素均有公因子,公因子外提一次(行列式是n次)
⌚ 13:58 矩阵乘法
- 前提:左矩阵列数 = 右矩阵行数
- 结果矩阵的行数 = 左矩阵行数,列数 = 右矩阵列数
- 结果矩阵第i行第j列的值 = 左矩阵第i行与右矩阵第j列对应元素乘积之和
- 宋氏七字:中间相等,取两头
AB 一般≠ BA
AB有意义,BA不一定有意义。若AB = BA
,则称A,B可交换- 左乘:在矩阵左边乘上一个矩阵,右乘同理
AB = 0 ≠> A=0 或 B=0
AB = AC,A≠0 ≠> B=C
- 与零矩阵左/右乘:零矩阵与任何矩阵相乘都为零矩阵
- 与单位阵左/右乘:
AE = A, EA = A
,此时E的形状可能不同 (AB)C = A(BC)
,AB顺序不可变(A + B)C = AC + BC
,AB顺序不可变k(AB) = (kA)B = A(kB)