图嵌入表示学习

分析:神经网络其实是一个黑箱,把原图输进去,然后可以得到每个节点的d维向量,再由这个d维向量去构造下游的预测任务,如果把这个d维向量做一个二维的投影和降维,目标就是在原图中相似的两个向量,在d维的空间中也应该足够相似,两个向量的距离应该能够表征两个节点在原图中的关系,也就是包含了节点的语义,所以这就是图嵌入的问题,重点就是这个f到底是如何学习的。

分析:其实可以看做编码器(Encoder), 把u节点通过图神经网络,映射为d维向量,v节点输入到图神经网络,得到d维向量,在d维空间中,向量之间的相似度应该能反映这两个节点在原图中的相似度,这样才能说明图神经网络真的理解了这个节点的特征和信息,并抽取出来。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值