三维重建数据集
MVImgNet
链接
公开数据集
DepthLab: From Partial to Complete
链接
港科大&港大 深度补全数据集
MVSNet 多视角重建数据集
1.DTU
简介
DTU是一个大型专门用于MVS的三维重建数据集,包含受控实验室环境中的128个场景,其模型使用结构光扫描仪捕获。在7种不同的照明条件下,在相同的49或64个相机位置扫描每个场景,生成分辨率为1200×1600像素的RGB图像。由于数据集涵盖了各种对象和材料(重建物体应该为3D打印模型),因此非常适合在现实条件下训练和测试深度学习MVS方法。
参考模型是点云,地面真实深度图应根据网格模型进行渲染,网格模型是使用表面重建方法(例如筛选泊松screened Poisson surface reconstruction)从参考模型生成的表面重建方法。在大多数工作中,数据集被分为三个子集,即训练、测试和验证划分。
评估指标是准确度Accuracy和完整度Completeness。DTU数据集中给除了MATLAB的点云评估代码。
DTU 官网
2.Tanks and Temples Benchmark(TN)
简介
Tanks Temple 图像数据集提供高分辨率的视频,研究人员可以从视频中采集图像,依据图像进行三维重建。该数据集提供训练数据和测试数据两类,其中测试数据分为中级组和高级组。训练集提供 7 个场景的 7 个高分辨率视频。
测试集共提供 14 个场景的 14 个高分辨率视频:中级组包含雕塑、大型车辆和具有外观相机轨迹的房屋建筑,高级组则包含从内部和大型室外场景拍摄的室内场景,有复杂的几何和相机轨迹。
在MVSNet 主要用于做Test
GT:
TN 官网
3.BlendedMVS(TN)
简介
首先利用三维重建算法从给定的场景图像中恢复出带纹理的三维网格模型。然后将重建得到的三维网格模型渲染得到彩色图像和深度图。为了在模型训练中引入环境的光照信息,渲染得到的彩色图像和原始输入图像进行混合,混合得到的彩色图像作为网络模型的训练输入。BlendedMVS数据集中包含超过17k的高分辨率图像,涵盖了各种场景,包括城市、建筑、雕塑和小物体。
构建合成MVS数据集的第一步是生成高质量的带纹理的三维网格模型。给定输入图像,首先利用Altizure平台进行三维网格重建。该软件会执行完整的三维重建算法,三维重建的输出结果为带纹理的三维网格模型和相机位姿。
根据三维网格模型和输入图像的相机位姿,可以把三维模型渲染到各个视点下得到渲染的图像和渲染的深度图。渲染得到的深度图将作为模型训练时深度图的ground-truth。
官网
无人三维重建数据集
UrbanScene3D
简介
构建了一个户外大场景三维模型平台,提供不同无人机飞行算法在不同条件下的航拍路径、航拍照片和一个带有物理引擎、光照系统的仿真环境,不仅能够用于无人机航线规划算法的测试、重建算法的评估、无人机与无人车的相关研究,也能被用于生成场景深度图和实例分割标签
项目主页
DDOS: The Drone Depth and Obstacle Segmentation Dataset
简介
提出了一个新的合成数据集,专门设计用于航空视图的深度和语义分割任务。利用照片级真实感渲染技术,同时引入了新的无人机特定深度精度指标。
Mid-Air: A multi-modal dataset for extremely low altitude drone flights
简介
介绍了Mid-Air,这是一个用于非结构化环境中低空无人机飞行的多用途合成数据集。它包含了54条轨迹和超过420,000个视频帧的多传感器同步数据,这些数据是在各种气候条件下模拟得到的。
FIReStereo: Forest InfraRed Stereo Dataset for UAS Depth Perception in Visually Degraded Environments
链接
简介
一个用于自主航空感知应用的立体热成像深度感知数据集。该数据集包括在城市和森林环境中,在白天、夜晚、雨天和烟雾等不同条件下捕获的立体热成像图像、激光雷达(LiDAR)、惯性测量单元(IMU)和真实的深度图。
DronePose: Photorealistic UAV-Assistant Dataset Synthesis for 3D Pose Estimation via a Smooth Silhouette Loss
简介
设计了一个数据合成管道,创建了一个包括外心用户视图和自我中心无人机视图的逼真多模态数据集。然后,我们利用逼真和合成输入的联合可用性来训练一个单目姿态估计模型。