视频压缩技术

本文探讨了如何通过YUV色彩空间转换降低UV通道的复杂度,利用傅里叶变换将时域信号转为频域,然后详细介绍了帧内Huffman压缩和帧间差分编码的方法。重点涉及线性扫描、存储优化和频率编码策略。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

由于眼睛对亮度信息更敏感,所以先将图像格式转换为YUV,再对UV进行压缩。

通过傅里叶变换,将时域的连续曲线,转换为点出现的频率曲线,

完成从时域-->频域的转换

帧内压缩

1、通过线性扫描,将二维图像1维化

aaaabbbddddd

2、第一步压缩,改变存储方式

4a3b5d

3、Huffman 压缩算法:将出现频率最高的数用最短的编码实现。

d-->0, a-->01, b-->10

帧间压缩

RGB-->YUV

1、A->B->C->D

A 和 D 作为基准帧,只做帧内压缩

B 参考A, 只保留差值部分

C 参考B 和 D,只保留差值部分

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值