一文看懂集成学习 Ensemble methods(Bagging, Boosting)

本文深入探讨了集成学习中的Bagging和Boosting方法。Bagging通过随机采样创建训练集,构建基模型并进行投票或平均操作得出结果,随机森林是其扩展。Boosting则通过调整样本权重,连续训练弱分类器,如AdaBoost,以降低偏差。两者的区别在于样本选择、权重分配、预测函数构建和并行计算。集成学习通过结合多种算法,如随机森林和提升树,提升了分类效果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在这里插入图片描述

集成学习

(截图来自《西瓜书》)
在这里插入图片描述
在这里插入图片描述

Bagging

在这里插入图片描述

  • 从原始样本集中随机采样。每轮从原始样本集中有放回的选取n个训练样本(在训练集中,有些样本可能被多次抽取到,而有些样本可能一次都没有被抽中)。共进行k轮抽取,得到k个训练集。(bootstrap的过程,由于是有放回抽样,所以k个训练集之间相互独立
  • 每次使用一份训练集训练一个模型,k 个训练集共得到 k 个基模型。(注:这里并没有具体的分类算法或回归方法,我们可以根据具体问题采用不同的分类或回归方法,如决策树、感知器等)
  • 利用这k个基模型对测试集进行预测,将k个预测结果进行聚合。(aggregating的过程)
    • 分类问题:将上步得到的k个模型采用投票的方式得到分类结果
    • 回归问题:计算上述模型的均值作为最后的结果。(
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值