体积形状的深层表示法
代码笔记:http://www.adv-ci.com/blog/source/cdbn/
作者:Zhirong Wu等人
1、解决的问题
前人大部分依赖对模型的部分进行标记和训练网络。
因为用3D数据进行目标检测和从2.5维图像中重构3D形状是个问题
还有种类识别问题
2、创新点
提出用卷积深度信念网络(Convolutional Deep Belief Network,CDBN)将几何3D形状表示为3D体素网格上二元变量的概率分布。
为了训练3D深度学习模型,构建了大型CAD数据集-Modelnet
(1)学习不同种类不同姿势的3D形状的分布,并得到层次表达
(2)支持联合目标识别,且可以从2.5D深度图中复原为3D图像,通过视图规划可以进行激活目标识别
3、优点
使用CAD数据作为训练数据,使用卷积DBN网络构建了一个3D ShapeNets,对Kinect传感器获取的2.5D深度图进行目标识别和复原全3D形状。
识别精度优于比较方法。
4、缺点
识别精度不高对于现在来说不高。
5、算法原理
5.1、 3D ShapeNets
每个三维网格表示为二进