数据拟合: 直线拟合--多项式拟合
1.问题概述
在实际问题中,常常需要从一组观察数据
(xi,yi) i=1,2,,..,n
去预测函数 y=f(x) 的表达式,从几何角度来说,这个问题就是要由给定的一组数据点(xi,yi)去描绘曲线 y=f(x) 的近似图像。插值方法是处理这类问题的一种数值方法。不过,由于插值曲线要求严格通过所给的每一个数据点,这种限制会保留所给数据的误差。如果个别数据的误差很大,那么插值效果显然是不理想的。
现在面对的问题具有这样的特点:所给数据本事不一定可靠,个别数据的误差甚至可能很大,但给出的数据很多。曲线拟合方法所研究的课题是:从给出的一大堆看上去杂乱无章的数据中找出规律来,就是说,设法构造一条曲线,即所谓拟合曲线,反映所给数据点总的趋势,以消除所给数据的局部波动。
2.理论与方法
假设所给数据点 (xi,yi) i=1,2,,..,n 的分布大致成一条直线。虽然不能要求所作的拟合直线
y = a + bx
严格的通过所有数据点(xi,yi)但总希望它尽可能地从所给数据点附近通过,就是说,要求近似地成立
这里,数据点的数目通常远远大于待定系数的数目,即N2,因此,拟合直线的构造本质上是个解超定方程组的代数问题。
设