Graphonomy: Universal Human Parsing via Graph Transfer Learning

Graphonomy是一种通过图转移学习实现的通用人体解析模型,旨在解决现有方法在不同数据集上泛化能力不足的问题。该模型通过Intra-GraphReasoning在单一数据集内建立高级图表达,并利用Inter-GraphTransfer在多个数据集间转换语义信息,以适应多样化的解析需求。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Graphonomy: Universal Human Parsing via Graph Transfer Learning(CVPR2019)
作者认为现在human parsing任务,都是每个网络针对每个不同的数据集调到最优而牺牲了泛化能力,所以想通过一个网络能统一处理各种human parsing的数据集,设计了一个通用的human parsing模型,可以通过统一来自不同领域或不同粒度级别的label annotations来处理各种human parsing需求。首先通过Intra-Graph Reasoning 在一个数据集中的label之间学习和前传简介的高级图表达,然后通过Inter-Graph Transfer在多个数据集中转换语义信息。
Intra-Graph Reasoning:
Xshi 在这里插入图片描述
X(HWC)是input feature,Z(N*D)是高级图表达,N是图node数即标签类别数,D是每个node的维数。W是可训练的转换矩阵,A是邻接矩阵(node adjacency weight),由上述两式即可将特征图变为关于节点的图表达。

Inter-Graph Transfer:
在这里插入图片描述
Atr 是映射 transfer矩阵(Zs to Zt)在这里插入图片描述
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值