springboot整合springcloud stream kafka

本文介绍了如何在Spring Boot应用中使用Spring Cloud Stream与Kafka进行集成,包括依赖配置、多Binder设置、通道接口定义、消息发送与接收服务以及测试Controller的实现。通过示例展示了如何在不同环境间进行消息传递。

1.导包

<dependency>
   <groupId>org.springframework.cloud</groupId>
   <artifactId>spring-cloud-starter-stream-kafka</artifactId>
   </dependency>
<dependency>
   <groupId>org.springframework.boot</groupId>
   <artifactId>spring-boot-starter-web</artifactId>
</dependency>

2.配置

单个binder:

spring:
  cloud:
    stream:
      kafka:
        binder:
          brokers: ip:port
          auto-create-topics: true
      bindings:
        output-channel:
          binder: kafka
          destination: topic_test
          content-type: application/json
        input-channel:
          binder: kafka
          destination: topic_test
          content-type: application/json

 多个binder:

server:
  port: 8088

spring:
  cloud:
    stream:
      binders:
        kafka1:  #自定义名字,供下面bindings下面的binder匹配
          type: kafka
          environment:
            spring:
              cloud:
                stream:
                  kafka:
                    binder:
                      brokers: ip:port # 根据字节的地址来填写
                      auto-create-topics: true #自动创建topic
        kafka2:  #自定义名字,供下面bindings下面的binder匹配
          type: kafka
          environment:
            spring:
              cloud:
                stream:
                  kafka:
                    binder:
                      brokers: ip:port # 根据字节的地址来填写
                      auto-create-topics: true #自动创建topic
      bindings:
        my_input_local_channel:  # 消费者
          binder: kafka1
          destination: local_topic_stu
          group: group1
        my_output_local_channel: # 生产者
          binder: kafka1
          destination: local_topic_stu
          contentType: application/json
        my_input_dev_channel:  # 消费者
          binder: kafka2
          destination: dev_topic_stu
          group: group1
        my_output_dev_channel: # 生产者
          binder: kafka2
          contentType: application/json
          destination: dev_topic_stu

3.编写通道代码

这边以多个binder来实现

public interface MyChannel {

    String DEV_INPUT_CHANNEL_NAME = "my_input_dev_channel";
    String DEV_OUTPUT_CHANNEL_NAME = "my_output_dev_channel";

    String LOCAL_INPUT_CHANNEL_NAME = "my_input_local_channel";
    String LOCAL_OUTPUT_CHANNEL_NAME = "my_output_local_channel";

    @Input(MyChannel.DEV_INPUT_CHANNEL_NAME)
    SubscribableChannel getDevMessage();

    @Output(MyChannel.DEV_OUTPUT_CHANNEL_NAME)
    MessageChannel pushDevMsg();


    @Input(MyChannel.LOCAL_INPUT_CHANNEL_NAME)
    SubscribableChannel getLocalMessage();

    @Output(MyChannel.LOCAL_OUTPUT_CHANNEL_NAME)
    MessageChannel pushLocalMsg();
}

//消息体类
@Data
@AllArgsConstructor
@NoArgsConstructor
public class MessageDto implements Serializable {
    private static final long serialVersionUID = -7968206925064164353L;

    private String id;
    private String type;
    private String data;
}

//消息发送
@Slf4j
@EnableBinding(MyChannel.class)
public class MessageSendService {

    @Resource
    private MyChannel channel;


    public boolean pushLocalMsg(MessageDto msg) {
        log.info("local发送消息:{}", JSONUtil.toJsonStr(msg));
        return channel.pushLocalMsg().send(MessageBuilder.withPayload(msg).build());
    }


    public boolean pushDevMsg(MessageDto msg) {
        log.info("dev发送消息:{}", JSONUtil.toJsonStr(msg));
        return channel.pushDevMsg().send(MessageBuilder.withPayload(msg).build());
    }
}

//消息接收
@Slf4j
@EnableBinding(MyChannel.class)
public class MessageReceiverService {

    @StreamListener(MyChannel.LOCAL_INPUT_CHANNEL_NAME)
    public void consumerLocalMessage(Message<MessageDto> msg) {
        log.info("local接收到消息:{}", JSONUtil.toJsonStr(msg.getPayload()));
    }


    @StreamListener(MyChannel.DEV_INPUT_CHANNEL_NAME)
    public void consumerDevMessage(Message<MessageDto> msg) {
        log.info("dev:接收到消息:{}", JSONUtil.toJsonStr(msg.getPayload()));
    }

}

4.编写测试controller

@RestController
public class MessageController {

    @Resource
    private MessageSendService messageSendService;

    @PostMapping("/sendMsg/{profile}")
    public String sendMsg(@PathVariable String profile, @RequestBody MessageDto dto) {
        dto.setId(UUID.fastUUID().toString(true));

        if (Objects.equals(profile, "dev")) {
            messageSendService.pushDevMsg(dto);
        } else {
            messageSendService.pushLocalMsg(dto);
        }
        return "success";
    }
}

5.测试结果

 

Spring Boot可以与Kafka Stream整合,实现实时计算的功能。Kafka Stream是Apache Kafka的一个特性,它允许对存储在Kafka中的数据进行流式处理和分析。在这种整合中,我们可以使用Spring BootKafka Stream Starter来轻松地配置和构建流式计算应用程序。 首先,我们需要在Spring Boot项目的pom.xml文件中添加相关的依赖。可以使用spring-kafkaspring-cloud-stream-binder-kafka来支持Kafka Stream的集成。 然后,我们可以创建一个带有@EnableBinding注解的配置类,它将定义输入和输出的主题。通过绑定这些主题,我们可以将Kafka的消息发送到流处理器中,并从流处理器中接收处理后的消息。 接下来,我们可以创建一个处理器类,使用@StreamListener注解来监听输入主题,并定义处理逻辑。当有新的消息被发送到输入主题时,处理器将自动调用相应的方法来处理消息,并将处理后的结果发送到输出主题。 最后,我们可以使用Spring Boot的自动配置来启动应用程序,并在控制台或其他地方查看实时计算的结果。 总结起来,Spring Boot整合Kafka Stream的实时计算可以通过配置依赖、创建配置类和处理器类来实现。这样,我们就可以方便地进行实时数据流处理和分析。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *2* *3* [kafka stream实现实时流式计算以及springboot集成kafka stream](https://blog.csdn.net/m0_45806184/article/details/126398614)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 100%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值