ESP32 gptimer通用定时器初始化报错:assert failed: timer_ll_set_clock_prescale

背景:IDF版本V5.1.2 ,配置ESP32 通用定时器,实现100HZ,占空比50% 的PWM波形。

        根据乐鑫官方的IDF指导文档设置内部计数器的分辨率,计数器每滴答一次相当于 1 / resolution_hz 秒。

(ESP-IDF编程指导文档:通用定时器 - ESP32 - — ESP-IDF 编程指南 release-v5.1 文档

那我们根据官方的指导编写初始化ESP32通用定时器的代码:

设置 分辨率 resolution_hz = 1000,重装载值 reload_count = 5,

那根据计算 PWM周期 =1/((resolution_hz *reload_count )*2)  = 1/(1000*5*2) = 0.1 ms = 100HZ

        但是实际上,按照上面的代码调用gpTimer_Init(1000,10)配置,ESP32 gptimer通用定时器初始化报错:assert failed: timer_ll_set_clock_prescale /IDF/components/hal/esp32s3/include/hal/timer_ll.h:86 (divider >= 2 && divider <= 65536)

通过上面的报错,我们找到timer_ll_set_clock_prescale 函数的源代码:

通过查看timer_ll_set_clock_prescale 源码,我们发现该函数设置的分频值divider 必须是2~65536 !
 

分析:乐鑫官方的IDF指导文档设置内部计数器的分辨率,计数器每滴答一次相当于 1 / resolution_hz 秒,其中的resolution_hz 实际上并不是真正设置的分频值!!!

查看源码我们发现:gptimer_new_timer();会调用gptimer_select_periph_clock();然后调用timer_ll_set_clock_prescale();去设置真正的分频值!

通过上面的分析,想必大家都已经明白了问题的所在了

        乐鑫官方文档写的定时器 分辨率 =1 / resolution_hz 秒。其中的resolution_hz 不是定时器的预分频值(divider),只是分辨率!是为了开发者更方便设置定时器,但是resolution_hz 的值并不能随意设置。

        由于ESP32的通用定时器的时钟源APB为80MHZ,且分频器是16位的。

        所以 2 =< divider <= 65536

        那么 80000000/65536 = 1221 <= resolution_hz <= 40000000 = 80000000/2 

综上所述:乐鑫官方的定时器分辨率中的 resolution_hz 最大设置为40000000,最小1221 !

所以我gpTimer_Init(1000,10)配置resolution_hz =1000,定时器初始化就会报错:assert failed: timer_ll_set_clock_prescale /IDF/components/hal/esp32s3/include/hal/timer_ll.h:86 (divider >= 2 && divider <= 65536)

正确应该 调用gpTimer_Init(10000,50)设置 分辨率 resolution_hz = 10000,重装载值 reload_count = 50,1/((1/10000)*50*2))=100HZ。

就可以实现100hz 50% 占空比的PWM。

要是想测试 resolution_hz 最大设置为40000000 可以调用 gpTimer_Init(40*1000*1000,200*1000);也可以实现100hz 50% 占空比的PWM。

<think>嗯,用户现在遇到了YOLOv5训练时的CUDA相关报错问题,特别是提到使用CUDA_LAUNCH_BLOCKING=1后仍然报错。我需要结合之前提供的引用和常见解决方法,来帮他分析可能的原因和解决方案。 首先,根据引用[1]和[2],CUDA错误通常涉及设备序号无效或内核问题。用户可能指定了错误的GPU编号,比如设备不存在。这时候需要检查CUDA_VISIBLE_DEVICES的设置是否正确,以及是否有权限访问该GPU。另外,检查nvidia-smi的输出,确认GPU状态是否正常。 然后,模型参数或输入数据的问题也可能导致错误。比如输入数据的维度不符合模型要求,或者数据中存在异常值(如NaN或无穷大)。用户可能需要检查数据预处理步骤,确保数据正确归一化,标签文件没有错误。引用[3]提到模型训练已经完成,但用户的问题可能和模型加载有关,比如预训练权重的问题,或者模型结构不匹配。可以建议用户尝试不使用预训练权重,或者检查模型配置是否正确。 PyTorch版本兼容性也是一个常见问题。引用[4]提到安装历史版本PyTorch可能解决CUBLAS错误,所以用户可能需要检查当前安装的PyTorch是否与CUDA驱动版本匹配。建议用户到PyTorch官网查看版本对应关系,并重新安装合适的版本。此外,更新或重新安装CUDA工具包,确保驱动程序是最新的,可能解决初始化问题。 环境配置方面,虚拟环境的问题也可能导致CUDA错误。用户是否在正确的环境中安装了所有依赖?有没有可能多个版本的库冲突?建议用户创建干净的虚拟环境,重新安装依赖,特别是PyTorch和torchvision。 还有,CUDA内存不足的情况也可能被误报为其他错误。用户需要检查batch size是否过大,或者尝试减少输入图像的尺寸。监控GPU内存使用情况,看是否有内存泄漏。 另外,用户可能没有正确设置CUDA_LAUNCH_BLOCKING=1的环境变量。需要确认是否在运行命令前正确设置了该变量,比如在命令行中使用:CUDA_LAUNCH_BLOCKING=1 python train.py ...。这有助于同步报错,准确定位问题发生的位置。 最后,如果以上方法都无效,建议用户提供完整的错误日志,这样可以更精确地定位问题。同时,查阅YOLOv5的官方GitHub issues,可能有类似的问题和解决方案。</think>针对YOLOv5训练时出现的CUDA相关报错问题,以下是逐步解决方案: ### 一、核心错误定位 根据引用[1][2][4],CUDA错误通常与以下因素相关: 1. **设备配置错误**:如无效的GPU编号(`invalid device ordinal`) 2. **环境不兼容**:PyTorch版本与CUDA驱动不匹配(引用[4]) 3. **数据/模型异常**:输入数据格式错误或模型参数问题(引用[1]) --- ### 二、具体解决步骤 #### 1. 验证GPU可用性 ```bash nvidia-smi # 确认GPU状态和CUDA版本 python -c "import torch; print(torch.cuda.is_available())" # 必须返回True ``` 若出现`False`,需检查CUDA驱动与PyTorch版本对应关系[^4] #### 2. 修正设备参数 在`train.py`启动命令中显式指定GPU: ```bash CUDA_LAUNCH_BLOCKING=1 python train.py --device 0 # 单卡训练时强制指定0号卡 ``` 若使用多卡,需确认`CUDA_VISIBLE_DEVICES`与实际卡号对应 #### 3. 环境重建(关键步骤) 通过conda创建纯净环境: ```bash conda create -n yolov5_env python=3.8 conda activate yolov5_env pip install torch==1.12.1+cu113 torchvision==0.13.1+cu113 -f https://download.pytorch.org/whl/torch_stable.html # 参考引用[4] pip install -r requirements.txt # 使用官方指定版本 ``` #### 4. 数据格式检查 验证数据配置文件: ```yaml # data/coco.yaml train: ../train/images val: ../val/images nc: 80 # 类别数必须与数据集一致 names: ['person', 'car', ...] # 标签名称列表 ``` #### 5. 梯度异常捕获 在训练代码中添加异常检测: ```python torch.autograd.set_detect_anomaly(True) # 定位NaN/inf梯度 ``` --- ### 三、进阶调试方案 | 错误类型 | 检测方法 | 解决措施 | |---------|---------|---------| | `CUBLAS_STATUS_NOT_INITIALIZED` | 检查CUDA内存占用 | 降低`--batch-size`参数 | | `device-side assert triggered` | 检查标签取值范围 | 确认标注文件无越界值 | | `invalid device ordinal` | 验证GPU物理连接 | 重启NVIDIA服务:`sudo systemctl restart nvidia-*` | ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值