NumPy -- 高级索引

一. Numpy 切片和索引

ndarray对象的内容可以通过索引或切片来访问和修改,与 Python 中 list 的切片操作一样。

ndarray 数组可以基于 0 - n 的下标进行索引,切片对象可以通过内置的 slice 函数,并设置 start, stop 及 step 参数进行,从原数组中切割出一个新数组。
eg :

import numpy as np 
a = np.arange(10) # arange类似于range,输出09的一维数组
s = slice(2,7,2)   # 从索引 2 开始到索引 7 停止,间隔为2
print (a[s])#[2  4  6]

我们也可以通过 冒号 和 逗号 分隔切片参数,在多维数组 中,逗号 用于 区分不同维度的索引 ,冒号 用于进行 范围选择

  • 一维数组
import numpy as np
arr = np.array([1,2,3,4,5])
print(arr[1:4])  # [2 3 4](包前不包后)
print(arr[:3])   # [1 2 3](从头开始)
print(arr[2:])   # [3 4 5](到结尾)
print(arr[::-1]) # [5 4 3 2 1](反转数组)
  • 二维数组
    多维数组中经常会将 冒号和逗号结合 起来使用
arr2d = np.array([[1, 2, 3], 
                  [4, 5, 6], 
                  [7, 8, 9]])
print(arr2d[:])  # 取整个数组
# [[1 2 3]
#  [4 5 6]
#  [7 8 9]]

print(arr2d[:2])  # 取前两行(索引 01)
# [[1 2 3]
#  [4 5 6]]
print(arr2d[1, 2])  # 取第二行第三列的元素(索引从 0 开始)
# 输出: 6
print(arr2d[:, :2])  # 取所有行的前两列
# [[1 2]
#  [4 5]
#  [7 8]]
print(arr2d[1, :])  # 取第二行的所有列
# [4 5 6]
print(arr2d[:, 1])  # 取第二列的所有行
# [2 5 8]
print(arr2d[1:, 1:])  # 取第23行和第23列的子矩阵
# [[5 6]
#  [8 9]]

二. 整数数组索引

整数数组索引是指使用一个数组来访问另一个数组的元素。这个数组中的每个元素都是目标数组中某个维度上的索引值。

以下实例获取数组中 (0,0),(1,1) 和 (2,0) 位置处的元素

import numpy as np 
 
x = np.array([[1,  2],  [3,  4],  [5,  6]]) 
y = x[[0,1,2],  [0,1,0]]  
print (y)

输出结果为:

[1  4  5]

以下实例获取了 4X3 数组中的四个角的元素。 行索引是 [0,0] 和 [3,3],而列索引是 [0,2] 和 [0,2]。

import numpy as np 
 
x = np.array([[  0,  1,  2],[  3,  4,  5],[  6,  7,  8],[  9,  10,  11]])  
print ('我们的数组是:' )
print (x)
print ('\n')
rows = np.array([[0,0],[3,3]]) 
cols = np.array([[0,2],[0,2]]) 
y = x[rows,cols]  
print  ('这个数组的四个角元素是:')
print (y)

输出结果为:

我们的数组是:
[[ 0  1  2]
 [ 3  4  5]
 [ 6  7  8]
 [ 9 10 11]]
 
 
这个数组的四个角元素是:
[[ 0  2]
 [ 9 11]]

返回的结果是包含每个角元素的 ndarray 对象。

可以借助切片 : 或 … 与索引数组组合。如下面例子:

import numpy as np
 
a = np.array([[1,2,3], [4,5,6],[7,8,9]])
b = a[1:3, 1:3]
c = a[1:3,[1,2]]
d = a[...,1:]
print(b)
print(c)
print(d)

输出结果为:

[[5 6]
 [8 9]]
[[5 6]
 [8 9]]
[[2 3]
 [5 6]
 [8 9]]

三. 布尔索引

我们可以通过一个布尔数组来索引目标数组。

布尔索引通过布尔运算(如:比较运算符)来获取符合指定条件的元素的数组。

以下实例获取大于 5 的元素:

import numpy as np 
 
x = np.array([[  0,  1,  2],[  3,  4,  5],[  6,  7,  8],[  9,  10,  11]])  
print ('我们的数组是:')
print (x)
print ('\n')
# 现在我们会打印出大于 5 的元素  
print  ('大于 5 的元素是:')
print (x[x >  5])

输出结果为:

我们的数组是:
[[ 0  1  2]
 [ 3  4  5]
 [ 6  7  8]
 [ 9 10 11]]
 
 
大于 5 的元素是:
[ 6  7  8  9 10 11]

以下实例使用了 ~(取补运算符)来过滤 NaN。

import numpy as np 
 
a = np.array([np.nan,  1,2,np.nan,3,4,5])  
print (a[~np.isnan(a)])

输出结果为:

[ 1.   2.   3.   4.   5.]

以下使用二维的布尔数组为三维数组的索引

import numpy as np

# 创建一个 3x3x3 的“小图像”
image = np.random.randint(0, 255, (4, 4, 3))
print("原始图像形状:", image.shape)

# 创建一个 3x3 的布尔掩码(只选左上角 2x2 区域)
mask = np.array([[True,  True,  False, False],
                 [True,  True,  False, False],
                 [False, False, False, False],
                 [False, False, False, False]])

# 使用 2D mask 索引 3D 数组
selected = image[mask]

print("image:",image)
print("selected:", selected)
print("选中了多少个像素?", selected.shape[0])  # 输出:4,这个即true的数量
print("每个像素是3个通道:", selected.shape)     # 输出:(4, 3)

输出:

原始图像形状: (4, 4, 3)
image: [[[ 71 203  93]
  [ 80 238  43]
  [148 143  56]
  [216 179 152]]

 [[110  92 201]
  [ 25 232  10]
  [186 235 111]
  [152  23  10]]

 [[121  49 227]
  [145  26  29]
  [167 166 165]
  [197  96 231]]

 [[203 142  43]
  [204 196  68]
  [203 192  28]
  [ 69  39  94]]]
selected: [[ 71 203  93]
 [ 80 238  43]
 [110  92 201]
 [ 25 232  10]]
选中了多少个像素? 4
每个像素是3个通道: (4, 3)

它选中了 4 个像素,每个像素有 3 个通道值。

当你用一个 2D 布尔数组 mask(形状 (H, W))去索引一个 3D 数组 image(形状 (H, W, C))时:
这时可以将C这维假装去掉,即将其视为一个整体。这样就只剩下(H, W)两维

NumPy 会将 mask 视为对前两个维度(H 和 W)的筛选条件。
第三个维度(颜色通道 C)保持不变,表示你要选择该位置上的所有通道。

这时修改操作也成立

image[mask] = [0, 0, 0]  # 将这 4 个像素全部设为黑色

因为 image[mask] 对应的是这 4 个位置的 (i,j,:),所以赋值 [0,0,0] 会广播到每个通道。

image[mask]  # 等价于
image[mask, ...]  # ... 表示“其余所有维度”
# 也等价于
image[mask, :]    # 对通道维度全选

四. 花式索引

花式索引指的是利用整数数组进行索引。

花式索引根据索引数组的值作为目标数组的某个轴的下标来取值。

对于使用一维整型数组作为索引,如果目标是一维数组,那么索引的结果就是对应位置的元素,如果目标是二维数组,那么就是对应下标的行。

花式索引跟切片不一样,它总是将数据复制到新数组中。

4.1. 一维数组

一维数组只有一个轴 axis = 0,所以一维数组就在 axis = 0 这个轴上取值:

import numpy as np
 
x = np.arange(9)
print(x)
# 一维数组读取指定下标对应的元素
print("-------读取下标对应的元素-------")
x2 = x[[0, 6]] # 使用花式索引
print(x2)
 
print(x2[0])
print(x2[1])

输出结果为:

[0 1 2 3 4 5 6 7 8]
-------读取下标对应的元素-------
[0 6]
0
6

4.2. 二维数组

1、传入顺序索引数组

import numpy as np 
 
x=np.arange(32).reshape((8,4))
print(x)
# 二维数组读取指定下标对应的行
print("-------读取下标对应的行-------")
print (x[[4,2,1,7]])

print (x[[4,2,1,7]]) 输出下表为 4, 2, 1, 7 对应的行,输出结果为

[[ 0  1  2  3]
 [ 4  5  6  7]
 [ 8  9 10 11]
 [12 13 14 15]
 [16 17 18 19]
 [20 21 22 23]
 [24 25 26 27]
 [28 29 30 31]]
-------读取下标对应的行-------
[[16 17 18 19]
 [ 8  9 10 11]
 [ 4  5  6  7]
 [28 29 30 31]]

2、传入多个索引数组(要使用 np.ix_)

np.ix_ 函数就是输入两个数组,产生笛卡尔积的映射关系。

笛卡尔乘积是指在数学中,两个集合 X 和 Y 的笛卡尔积(Cartesian product),又称直积,表示为 X×Y,第一个对象是X的成员而第二个对象是 Y 的所有可能有序对的其中一个成员。

例如 A={a,b}, B={0,1,2},则:

A×B={(a, 0), (a, 1), (a, 2), (b, 0), (b, 1), (b, 2)}
B×A={(0, a), (0, b), (1, a), (1, b), (2, a), (2, b)}
import numpy as np 
 
x=np.arange(32).reshape((8,4))
print (x[np.ix_([1,5,7,2],[0,3,1,2])])

输出结果为:

[[ 4  7  5  6]
 [20 23 21 22]
 [28 31 29 30]
 [ 8 11  9 10]]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值