自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

分享知识

分享知识

  • 博客(541)
  • 收藏
  • 关注

原创 基于CNN卷积神经网络的11种花卉识别-免费下载版

摘要:提供免费下载的代码,包含CNN模型和PyQt界面。安装环境需参考CSDN博客教程,安装Anaconda、Python和PyTorch。安装完成后,运行03pyqt.py文件即可调用训练好的CNN模型进行图像识别。界面操作简单:选择图片后点击识别按钮即可查看结果。代码下载地址和详细教程已给出。

2025-07-13 01:12:59 188

原创 基于CNN卷积神经网络的11种花卉识别-含小程序-web和pyqt

摘要:该代码实现了一个花卉识别系统,支持11种常见花卉品种(共2151张图片)。系统包含三个应用界面:PyQt桌面端、Web网页端和微信小程序端。代码处理流程分为三步:1)数据集划分生成训练/验证文本;2)模型训练并保存指标结果;3)三个界面调用模型实现交互识别。

2025-07-13 01:04:37 495

原创 深度学习如何快速部署服务器让外面的其他人通过网页访问

深度学习代码是这样的,包含图片数据集和templates文件夹下写好的html网页。以及深度学习运行的3个py文件,分别用于数据集txt制作,模型训练和网页接口生成。内网击穿需要自行配置的,这里不做过多的介绍,可自行搜索内网击穿的教程,根据网上的一些内网击穿的教程,配置好内网击穿的功能,比如某壳。因为这个127.0.0.1:20816这个地址是内网ip地址,只能局域网的人访问,外面的人是无法访问的。再点击识别按钮,就实现了将图片传给服务器,然后服务器上的深度学习代码将识别到的结果返回。

2024-07-19 23:38:33 434

原创 web网页html版通过python_CNN卷积神经网络对辣椒类别识别-含图片数据集

本代码对数据集进行了预处理,包括通过在较短边增加灰边,使得图片变为正方形(如果图片原本就是正方形则不会增加灰边),和旋转角度,来扩增增强数据集,运行02深度学习模型训练.py就会将txt文本中记录的训练集和验证集进行读取训练,训练好后会保存模型在本地。这个时候网页正中心的按钮,点击就可以加载图片识别了,首先选择我们数据集文件夹里面的图片,进行加载。下载本代码后,有个环境安装的requirement.txt文本,环境需要自行配置。在本机电脑的网页上打开,或手动输入这个url,切记不要输错。

2024-06-29 09:04:21 401

原创 web网页html版通过CNN卷积神经网络的宠物行为训练识别-含图片数据集

本代码对数据集进行了预处理,包括通过在较短边增加灰边,使得图片变为正方形(如果图片原本就是正方形则不会增加灰边),和旋转角度,来扩增增强数据集,运行02深度学习模型训练.py就会将txt文本中记录的训练集和验证集进行读取训练,训练好后会保存模型在本地。这个时候网页正中心的按钮,点击就可以加载图片识别了,首先选择我们数据集文件夹里面的图片,进行加载。下载本代码后,有个环境安装的requirement.txt文本,环境需要自行配置。在本机电脑的网页上打开,或手动输入这个url,切记不要输错。

2024-06-29 09:03:47 363

原创 web网页html版通过CNN卷积神经网络对盆栽识别-含图片数据集-含数据集

本代码对数据集进行了预处理,包括通过在较短边增加灰边,使得图片变为正方形(如果图片原本就是正方形则不会增加灰边),和旋转角度,来扩增增强数据集,运行02深度学习模型训练.py就会将txt文本中记录的训练集和验证集进行读取训练,训练好后会保存模型在本地。这个时候网页正中心的按钮,点击就可以加载图片识别了,首先选择我们数据集文件夹里面的图片,进行加载。下载本代码后,有个环境安装的requirement.txt文本,环境需要自行配置。在本机电脑的网页上打开,或手动输入这个url,切记不要输错。

2024-06-29 09:03:12 327

原创 web网页html版通过CNN卷积神经网络对海洋壳类生物识别-含图片数据集-含数据集

本代码对数据集进行了预处理,包括通过在较短边增加灰边,使得图片变为正方形(如果图片原本就是正方形则不会增加灰边),和旋转角度,来扩增增强数据集,运行02深度学习模型训练.py就会将txt文本中记录的训练集和验证集进行读取训练,训练好后会保存模型在本地。这个时候网页正中心的按钮,点击就可以加载图片识别了,首先选择我们数据集文件夹里面的图片,进行加载。下载本代码后,有个环境安装的requirement.txt文本,环境需要自行配置。在本机电脑的网页上打开,或手动输入这个url,切记不要输错。

2024-06-29 09:02:34 391

原创 web网页html版基于python卷积神经网络训练识别牙齿是否健康-含图片数据集-含数据集

本代码对数据集进行了预处理,包括通过在较短边增加灰边,使得图片变为正方形(如果图片原本就是正方形则不会增加灰边),和旋转角度,来扩增增强数据集,运行02深度学习模型训练.py就会将txt文本中记录的训练集和验证集进行读取训练,训练好后会保存模型在本地。这个时候网页正中心的按钮,点击就可以加载图片识别了,首先选择我们数据集文件夹里面的图片,进行加载。下载本代码后,有个环境安装的requirement.txt文本,环境需要自行配置。在本机电脑的网页上打开,或手动输入这个url,切记不要输错。

2024-06-29 09:02:00 188

原创 web网页html版基于CNN卷积网络的动物是否疲劳识别-含图片数据集-含数据集

本代码对数据集进行了预处理,包括通过在较短边增加灰边,使得图片变为正方形(如果图片原本就是正方形则不会增加灰边),和旋转角度,来扩增增强数据集,运行02深度学习模型训练.py就会将txt文本中记录的训练集和验证集进行读取训练,训练好后会保存模型在本地。这个时候网页正中心的按钮,点击就可以加载图片识别了,首先选择我们数据集文件夹里面的图片,进行加载。下载本代码后,有个环境安装的requirement.txt文本,环境需要自行配置。在本机电脑的网页上打开,或手动输入这个url,切记不要输错。

2024-06-29 09:01:25 288

原创 web网页html版基于CNN卷积神经网络识别玻璃是否破碎-含图片数据集-含数据集

本代码对数据集进行了预处理,包括通过在较短边增加灰边,使得图片变为正方形(如果图片原本就是正方形则不会增加灰边),和旋转角度,来扩增增强数据集,运行02深度学习模型训练.py就会将txt文本中记录的训练集和验证集进行读取训练,训练好后会保存模型在本地。这个时候网页正中心的按钮,点击就可以加载图片识别了,首先选择我们数据集文件夹里面的图片,进行加载。下载本代码后,有个环境安装的requirement.txt文本,环境需要自行配置。在本机电脑的网页上打开,或手动输入这个url,切记不要输错。

2024-06-29 09:00:48 267

原创 web网页html版基于CNN卷积神经网络对鸟类识别-含图片数据集-含数据集

本代码对数据集进行了预处理,包括通过在较短边增加灰边,使得图片变为正方形(如果图片原本就是正方形则不会增加灰边),和旋转角度,来扩增增强数据集,运行02深度学习模型训练.py就会将txt文本中记录的训练集和验证集进行读取训练,训练好后会保存模型在本地。这个时候网页正中心的按钮,点击就可以加载图片识别了,首先选择我们数据集文件夹里面的图片,进行加载。下载本代码后,有个环境安装的requirement.txt文本,环境需要自行配置。在本机电脑的网页上打开,或手动输入这个url,切记不要输错。

2024-06-29 08:59:57 345

原创 web网页html版基于深度学习训练识别常见水果-含数据集

本代码对数据集进行了预处理,包括通过在较短边增加灰边,使得图片变为正方形(如果图片原本就是正方形则不会增加灰边),和旋转角度,来扩增增强数据集,运行02深度学习模型训练.py就会将txt文本中记录的训练集和验证集进行读取训练,训练好后会保存模型在本地。这个时候网页正中心的按钮,点击就可以加载图片识别了,首先选择我们数据集文件夹里面的图片,进行加载。下载本代码后,有个环境安装的requirement.txt文本,环境需要自行配置。在本机电脑的网页上打开,或手动输入这个url,切记不要输错。

2024-06-29 08:59:16 149

原创 web网页html版基于深度学习的墙体裂缝有无裂缝识别-含数据集

本代码对数据集进行了预处理,包括通过在较短边增加灰边,使得图片变为正方形(如果图片原本就是正方形则不会增加灰边),和旋转角度,来扩增增强数据集,运行02深度学习模型训练.py就会将txt文本中记录的训练集和验证集进行读取训练,训练好后会保存模型在本地。这个时候网页正中心的按钮,点击就可以加载图片识别了,首先选择我们数据集文件夹里面的图片,进行加载。下载本代码后,有个环境安装的requirement.txt文本,环境需要自行配置。在本机电脑的网页上打开,或手动输入这个url,切记不要输错。

2024-06-28 21:57:08 172

原创 web网页html版基于深度学习python的鞋面缺陷识别-含数据集

本代码对数据集进行了预处理,包括通过在较短边增加灰边,使得图片变为正方形(如果图片原本就是正方形则不会增加灰边),和旋转角度,来扩增增强数据集,运行02深度学习模型训练.py就会将txt文本中记录的训练集和验证集进行读取训练,训练好后会保存模型在本地。这个时候网页正中心的按钮,点击就可以加载图片识别了,首先选择我们数据集文件夹里面的图片,进行加载。下载本代码后,有个环境安装的requirement.txt文本,环境需要自行配置。在本机电脑的网页上打开,或手动输入这个url,切记不要输错。

2024-06-28 21:56:28 324

原创 web网页html版基于卷积神经网络对不同柑橘病变识别-含数据集

本代码对数据集进行了预处理,包括通过在较短边增加灰边,使得图片变为正方形(如果图片原本就是正方形则不会增加灰边),和旋转角度,来扩增增强数据集,运行02深度学习模型训练.py就会将txt文本中记录的训练集和验证集进行读取训练,训练好后会保存模型在本地。这个时候网页正中心的按钮,点击就可以加载图片识别了,首先选择我们数据集文件夹里面的图片,进行加载。下载本代码后,有个环境安装的requirement.txt文本,环境需要自行配置。在本机电脑的网页上打开,或手动输入这个url,切记不要输错。

2024-06-28 21:55:47 271

原创 web网页html版基于python深度学习识别水面漂浮垃圾-含数据集

本代码对数据集进行了预处理,包括通过在较短边增加灰边,使得图片变为正方形(如果图片原本就是正方形则不会增加灰边),和旋转角度,来扩增增强数据集,运行02深度学习模型训练.py就会将txt文本中记录的训练集和验证集进行读取训练,训练好后会保存模型在本地。这个时候网页正中心的按钮,点击就可以加载图片识别了,首先选择我们数据集文件夹里面的图片,进行加载。下载本代码后,有个环境安装的requirement.txt文本,环境需要自行配置。在本机电脑的网页上打开,或手动输入这个url,切记不要输错。

2024-06-28 21:55:03 471

原创 web网页html版基于python深度学习的乐器识别-含数据集

本代码对数据集进行了预处理,包括通过在较短边增加灰边,使得图片变为正方形(如果图片原本就是正方形则不会增加灰边),和旋转角度,来扩增增强数据集,运行02深度学习模型训练.py就会将txt文本中记录的训练集和验证集进行读取训练,训练好后会保存模型在本地。这个时候网页正中心的按钮,点击就可以加载图片识别了,首先选择我们数据集文件夹里面的图片,进行加载。下载本代码后,有个环境安装的requirement.txt文本,环境需要自行配置。在本机电脑的网页上打开,或手动输入这个url,切记不要输错。

2024-06-28 21:54:26 329

原创 web网页html版基于python_CNN卷积神经网络识别花卉是否绽放-含数据集

本代码对数据集进行了预处理,包括通过在较短边增加灰边,使得图片变为正方形(如果图片原本就是正方形则不会增加灰边),和旋转角度,来扩增增强数据集,运行02深度学习模型训练.py就会将txt文本中记录的训练集和验证集进行读取训练,训练好后会保存模型在本地。这个时候网页正中心的按钮,点击就可以加载图片识别了,首先选择我们数据集文件夹里面的图片,进行加载。下载本代码后,有个环境安装的requirement.txt文本,环境需要自行配置。在本机电脑的网页上打开,或手动输入这个url,切记不要输错。

2024-06-28 21:53:42 292

原创 web网页html版基于python_CNN卷积神经网络识别花卉是否枯萎-含数据集

本代码对数据集进行了预处理,包括通过在较短边增加灰边,使得图片变为正方形(如果图片原本就是正方形则不会增加灰边),和旋转角度,来扩增增强数据集,运行02深度学习模型训练.py就会将txt文本中记录的训练集和验证集进行读取训练,训练好后会保存模型在本地。这个时候网页正中心的按钮,点击就可以加载图片识别了,首先选择我们数据集文件夹里面的图片,进行加载。下载本代码后,有个环境安装的requirement.txt文本,环境需要自行配置。在本机电脑的网页上打开,或手动输入这个url,切记不要输错。

2024-06-28 21:52:57 258

原创 web网页html版基于python_CNN卷积神经网络训练识别苹果是否成熟-含数据集

本代码对数据集进行了预处理,包括通过在较短边增加灰边,使得图片变为正方形(如果图片原本就是正方形则不会增加灰边),和旋转角度,来扩增增强数据集,运行02深度学习模型训练.py就会将txt文本中记录的训练集和验证集进行读取训练,训练好后会保存模型在本地。这个时候网页正中心的按钮,点击就可以加载图片识别了,首先选择我们数据集文件夹里面的图片,进行加载。下载本代码后,有个环境安装的requirement.txt文本,环境需要自行配置。在本机电脑的网页上打开,或手动输入这个url,切记不要输错。

2024-06-28 21:52:21 246

原创 web网页html版通过深度学习-pytorch对水果(柠檬)品种识别-含数据集

本代码对数据集进行了预处理,包括通过在较短边增加灰边,使得图片变为正方形(如果图片原本就是正方形则不会增加灰边),和旋转角度,来扩增增强数据集,运行02深度学习模型训练.py就会将txt文本中记录的训练集和验证集进行读取训练,训练好后会保存模型在本地。这个时候网页正中心的按钮,点击就可以加载图片识别了,首先选择我们数据集文件夹里面的图片,进行加载。下载本代码后,有个环境安装的requirement.txt文本,环境需要自行配置。在本机电脑的网页上打开,或手动输入这个url,切记不要输错。

2024-06-28 21:51:35 256

原创 web网页html版基于python深度学习识别草莓和其他-含数据集

本代码对数据集进行了预处理,包括通过在较短边增加灰边,使得图片变为正方形(如果图片原本就是正方形则不会增加灰边),和旋转角度,来扩增增强数据集,运行02深度学习模型训练.py就会将txt文本中记录的训练集和验证集进行读取训练,训练好后会保存模型在本地。这个时候网页正中心的按钮,点击就可以加载图片识别了,首先选择我们数据集文件夹里面的图片,进行加载。下载本代码后,有个环境安装的requirement.txt文本,环境需要自行配置。在本机电脑的网页上打开,或手动输入这个url,切记不要输错。

2024-06-28 21:50:45 261

原创 web网页html版基于python深度学习的餐桌美食识别-含数据集

本代码对数据集进行了预处理,包括通过在较短边增加灰边,使得图片变为正方形(如果图片原本就是正方形则不会增加灰边),和旋转角度,来扩增增强数据集,运行02深度学习模型训练.py就会将txt文本中记录的训练集和验证集进行读取训练,训练好后会保存模型在本地。这个时候网页正中心的按钮,点击就可以加载图片识别了,首先选择我们数据集文件夹里面的图片,进行加载。下载本代码后,有个环境安装的requirement.txt文本,环境需要自行配置。在本机电脑的网页上打开,或手动输入这个url,切记不要输错。

2024-06-28 21:50:04 309

原创 web网页html版基于python深度学习的猫狗表情识别-含数据集

本代码对数据集进行了预处理,包括通过在较短边增加灰边,使得图片变为正方形(如果图片原本就是正方形则不会增加灰边),和旋转角度,来扩增增强数据集,运行02深度学习模型训练.py就会将txt文本中记录的训练集和验证集进行读取训练,训练好后会保存模型在本地。这个时候网页正中心的按钮,点击就可以加载图片识别了,首先选择我们数据集文件夹里面的图片,进行加载。下载本代码后,有个环境安装的requirement.txt文本,环境需要自行配置。在本机电脑的网页上打开,或手动输入这个url,切记不要输错。

2024-06-28 21:49:20 365

原创 web网页html版基于python深度学习的树叶健康识别-含数据集

本代码对数据集进行了预处理,包括通过在较短边增加灰边,使得图片变为正方形(如果图片原本就是正方形则不会增加灰边),和旋转角度,来扩增增强数据集,运行02深度学习模型训练.py就会将txt文本中记录的训练集和验证集进行读取训练,训练好后会保存模型在本地。这个时候网页正中心的按钮,点击就可以加载图片识别了,首先选择我们数据集文件夹里面的图片,进行加载。下载本代码后,有个环境安装的requirement.txt文本,环境需要自行配置。在本机电脑的网页上打开,或手动输入这个url,切记不要输错。

2024-06-28 21:48:37 169

原创 web网页html版基于python深度学习的手势识别数字-含数据集

本代码对数据集进行了预处理,包括通过在较短边增加灰边,使得图片变为正方形(如果图片原本就是正方形则不会增加灰边),和旋转角度,来扩增增强数据集,运行02深度学习模型训练.py就会将txt文本中记录的训练集和验证集进行读取训练,训练好后会保存模型在本地。这个时候网页正中心的按钮,点击就可以加载图片识别了,首先选择我们数据集文件夹里面的图片,进行加载。下载本代码后,有个环境安装的requirement.txt文本,环境需要自行配置。在本机电脑的网页上打开,或手动输入这个url,切记不要输错。

2024-06-27 20:18:24 297

原创 web网页html版基于python卷积神经网络的海洋生物识别-含数据集

本代码对数据集进行了预处理,包括通过在较短边增加灰边,使得图片变为正方形(如果图片原本就是正方形则不会增加灰边),和旋转角度,来扩增增强数据集,运行02深度学习模型训练.py就会将txt文本中记录的训练集和验证集进行读取训练,训练好后会保存模型在本地。这个时候网页正中心的按钮,点击就可以加载图片识别了,首先选择我们数据集文件夹里面的图片,进行加载。下载本代码后,有个环境安装的requirement.txt文本,环境需要自行配置。在本机电脑的网页上打开,或手动输入这个url,切记不要输错。

2024-06-27 20:17:41 345

原创 web网页html版基于python-CNN的常见鱼类分类识别-含数据集-含数据集

本代码对数据集进行了预处理,包括通过在较短边增加灰边,使得图片变为正方形(如果图片原本就是正方形则不会增加灰边),和旋转角度,来扩增增强数据集,运行02深度学习模型训练.py就会将txt文本中记录的训练集和验证集进行读取训练,训练好后会保存模型在本地。这个时候网页正中心的按钮,点击就可以加载图片识别了,首先选择我们数据集文件夹里面的图片,进行加载。下载本代码后,有个环境安装的requirement.txt文本,环境需要自行配置。在本机电脑的网页上打开,或手动输入这个url,切记不要输错。

2024-06-27 20:16:58 467

原创 web网页html版会飞的昆虫识别-python深度学习-含数据集

本代码对数据集进行了预处理,包括通过在较短边增加灰边,使得图片变为正方形(如果图片原本就是正方形则不会增加灰边),和旋转角度,来扩增增强数据集,运行02深度学习模型训练.py就会将txt文本中记录的训练集和验证集进行读取训练,训练好后会保存模型在本地。这个时候网页正中心的按钮,点击就可以加载图片识别了,首先选择我们数据集文件夹里面的图片,进行加载。下载本代码后,有个环境安装的requirement.txt文本,环境需要自行配置。在本机电脑的网页上打开,或手动输入这个url,切记不要输错。

2024-06-27 20:16:18 308

原创 web网页html版通过pytorch训练蔬菜识别-含数据集

本代码对数据集进行了预处理,包括通过在较短边增加灰边,使得图片变为正方形(如果图片原本就是正方形则不会增加灰边),和旋转角度,来扩增增强数据集,运行02深度学习模型训练.py就会将txt文本中记录的训练集和验证集进行读取训练,训练好后会保存模型在本地。这个时候网页正中心的按钮,点击就可以加载图片识别了,首先选择我们数据集文件夹里面的图片,进行加载。下载本代码后,有个环境安装的requirement.txt文本,环境需要自行配置。在本机电脑的网页上打开,或手动输入这个url,切记不要输错。

2024-06-27 20:15:43 168

原创 web网页html版通过python卷积神经网络训练形状识别-含数据集

本代码对数据集进行了预处理,包括通过在较短边增加灰边,使得图片变为正方形(如果图片原本就是正方形则不会增加灰边),和旋转角度,来扩增增强数据集,运行02深度学习模型训练.py就会将txt文本中记录的训练集和验证集进行读取训练,训练好后会保存模型在本地。这个时候网页正中心的按钮,点击就可以加载图片识别了,首先选择我们数据集文件夹里面的图片,进行加载。下载本代码后,有个环境安装的requirement.txt文本,环境需要自行配置。在本机电脑的网页上打开,或手动输入这个url,切记不要输错。

2024-06-27 20:15:06 342

原创 web网页html版通过cnn训练手写数字识别-含数据集

本代码对数据集进行了预处理,包括通过在较短边增加灰边,使得图片变为正方形(如果图片原本就是正方形则不会增加灰边),和旋转角度,来扩增增强数据集,运行02深度学习模型训练.py就会将txt文本中记录的训练集和验证集进行读取训练,训练好后会保存模型在本地。这个时候网页正中心的按钮,点击就可以加载图片识别了,首先选择我们数据集文件夹里面的图片,进行加载。下载本代码后,有个环境安装的requirement.txt文本,环境需要自行配置。在本机电脑的网页上打开,或手动输入这个url,切记不要输错。

2024-06-27 20:14:25 162

原创 web网页html版通过CNN图像识别昆虫类别-含数据集

本代码对数据集进行了预处理,包括通过在较短边增加灰边,使得图片变为正方形(如果图片原本就是正方形则不会增加灰边),和旋转角度,来扩增增强数据集,运行02深度学习模型训练.py就会将txt文本中记录的训练集和验证集进行读取训练,训练好后会保存模型在本地。这个时候网页正中心的按钮,点击就可以加载图片识别了,首先选择我们数据集文件夹里面的图片,进行加载。下载本代码后,有个环境安装的requirement.txt文本,环境需要自行配置。在本机电脑的网页上打开,或手动输入这个url,切记不要输错。

2024-06-27 20:13:53 284

原创 web网页html版通过cnn卷积网络识别树叶是否存在病变-含数据集

本代码对数据集进行了预处理,包括通过在较短边增加灰边,使得图片变为正方形(如果图片原本就是正方形则不会增加灰边),和旋转角度,来扩增增强数据集,运行02深度学习模型训练.py就会将txt文本中记录的训练集和验证集进行读取训练,训练好后会保存模型在本地。这个时候网页正中心的按钮,点击就可以加载图片识别了,首先选择我们数据集文件夹里面的图片,进行加载。下载本代码后,有个环境安装的requirement.txt文本,环境需要自行配置。在本机电脑的网页上打开,或手动输入这个url,切记不要输错。

2024-06-27 20:13:17 266

原创 web网页html版基于python深度学习识别水果的成熟度-含数据集

本代码对数据集进行了预处理,包括通过在较短边增加灰边,使得图片变为正方形(如果图片原本就是正方形则不会增加灰边),和旋转角度,来扩增增强数据集,运行02深度学习模型训练.py就会将txt文本中记录的训练集和验证集进行读取训练,训练好后会保存模型在本地。这个时候网页正中心的按钮,点击就可以加载图片识别了,首先选择我们数据集文件夹里面的图片,进行加载。下载本代码后,有个环境安装的requirement.txt文本,环境需要自行配置。在本机电脑的网页上打开,或手动输入这个url,切记不要输错。

2024-06-27 20:12:14 262

原创 web网页html版基于python深度学习的鲜花识别-含数据集

本代码对数据集进行了预处理,包括通过在较短边增加灰边,使得图片变为正方形(如果图片原本就是正方形则不会增加灰边),和旋转角度,来扩增增强数据集,运行02深度学习模型训练.py就会将txt文本中记录的训练集和验证集进行读取训练,训练好后会保存模型在本地。这个时候网页正中心的按钮,点击就可以加载图片识别了,首先选择我们数据集文件夹里面的图片,进行加载。下载本代码后,有个环境安装的requirement.txt文本,环境需要自行配置。在本机电脑的网页上打开,或手动输入这个url,切记不要输错。

2024-06-27 20:11:34 225

原创 web网页html版基于python深度学习的砖头墙裂缝识别-含数据集

本代码对数据集进行了预处理,包括通过在较短边增加灰边,使得图片变为正方形(如果图片原本就是正方形则不会增加灰边),和旋转角度,来扩增增强数据集,运行02深度学习模型训练.py就会将txt文本中记录的训练集和验证集进行读取训练,训练好后会保存模型在本地。这个时候网页正中心的按钮,点击就可以加载图片识别了,首先选择我们数据集文件夹里面的图片,进行加载。下载本代码后,有个环境安装的requirement.txt文本,环境需要自行配置。在本机电脑的网页上打开,或手动输入这个url,切记不要输错。

2024-06-27 20:09:58 268

原创 web网页html版基于python深度学习的印刷体数字和字母识别-含数据集

本代码对数据集进行了预处理,包括通过在较短边增加灰边,使得图片变为正方形(如果图片原本就是正方形则不会增加灰边),和旋转角度,来扩增增强数据集,运行02深度学习模型训练.py就会将txt文本中记录的训练集和验证集进行读取训练,训练好后会保存模型在本地。这个时候网页正中心的按钮,点击就可以加载图片识别了,首先选择我们数据集文件夹里面的图片,进行加载。下载本代码后,有个环境安装的requirement.txt文本,环境需要自行配置。在本机电脑的网页上打开,或手动输入这个url,切记不要输错。

2024-06-27 20:09:09 293

原创 web网页html版CNN深度学习的遥感图片识别沙漠湖泊和森林-含数据集

本代码对数据集进行了预处理,包括通过在较短边增加灰边,使得图片变为正方形(如果图片原本就是正方形则不会增加灰边),和旋转角度,来扩增增强数据集,运行02深度学习模型训练.py就会将txt文本中记录的训练集和验证集进行读取训练,训练好后会保存模型在本地。这个时候网页正中心的按钮,点击就可以加载图片识别了,首先选择我们数据集文件夹里面的图片,进行加载。下载本代码后,有个环境安装的requirement.txt文本,环境需要自行配置。在本机电脑的网页上打开,或手动输入这个url,切记不要输错。

2024-06-27 20:07:21 232

原创 web网页html版通过CNN卷积网络的蔬菜识别-含数据集

本代码对数据集进行了预处理,包括通过在较短边增加灰边,使得图片变为正方形(如果图片原本就是正方形则不会增加灰边),和旋转角度,来扩增增强数据集,运行02深度学习模型训练.py就会将txt文本中记录的训练集和验证集进行读取训练,训练好后会保存模型在本地。这个时候网页正中心的按钮,点击就可以加载图片识别了,首先选择我们数据集文件夹里面的图片,进行加载。下载本代码后,有个环境安装的requirement.txt文本,环境需要自行配置。在本机电脑的网页上打开,或手动输入这个url,切记不要输错。

2024-06-26 21:35:28 282

免费下载版-基于CNN卷积神经网络对11种花卉进行识别.zip

本代码为免费版,含模型和pyqt界面。 环境安装可以参考博客: https://blog.csdn.net/no_work/article/details/139246467?spm=1011.2415.3001.5331 环境成功安装之后,直接运行03pyqt.py。即可调用result文件夹下训练好的cnn卷积神经网络模型。 通过python 03pyqt.py指令运行,打开pyqt界面。 点击选择图片按钮,选择要识别的图片。 再点击识别按钮进行识别。 免费版代码数据集文件夹每个类别只有2张图片。 付费版包括数据集图片数量2151张,含数据集文本制作py文件,深度学习训练代码,以及pyqt,web网页和小程序交互代码等。如果免费版运行正常,则这个环境可以直接应用在付费版,无需再安装环境。 付费完整版下载地址: https://download.csdn.net/download/qq_34904125/91202701

2025-07-13

基于CNN卷积神经网络的11种花卉识别-含pyqt-web网页和小程序界面

本代码下载后,包含11种花卉,分别是雏菊、丁香花、桂花、康乃馨、玫瑰花、梅花、蒲公英、牵牛花、水仙花、向日葵、郁金香等。图片数据集文件总数2162,其中图片数量2151张。 运行本代码,最终可实现在pyqt界面上,web网页上和小程序上,3个界面使用模型应用。 代码的环境安装可以参考博客:https://blog.csdn.net/no_work/article/details/139246467?spm=1011.2415.3001.5331 一共11种花卉文件夹,总图片数量2151张。 运行01数据集文本生成制作.py会将data文件夹下图片划分为训练集和验证集,其对应的路径和标签,会保存在train.txt和val.txt中。 运行02train.py文件则将数据集进行读取训练,训练好的模型保存在result文件夹下,同时会生成评价指标图:精确度、召回率和f1-score。 最后运行03.py就可以调用模型,在界面上实现交互识别功能。 其中03.py分为了3个文件, 运行03pyqt.py,则实现的是pyqt界面。通过点击按钮,就可以将本地文件夹里的图片传到界面上,然后识别。运行03web.py是生成了一个http://127.0.0.1:4399的一个本地网页地址,通过打开这个网页,同样可以点击里面的按钮加载本地电脑上的图片,实现识别功能。

2025-06-29

基于python深度学习对动物的异常声音识别-含音频数据集和训练识别代码.zip

本资源包含数据集两种音频,分别是正常声和异常声,这些声音来源猫狗。 通过python、pytorch环境运行。 环境的安装可参考: https://blog.csdn.net/no_work/article/details/145416261 代码整体是非常简便的,总共三个py部分和一个数据集在data文件夹下。 运行python 01数据集文本生成制作.py 会在logs文件夹下生成2个txt文本,分别存放了wav音频的路径和对应的标签。 运行python 02train.py就会训练这个txt文本里面的数据,并将训练的模型与验证集里面的数据进行验证。 最后模型也是保存在logs文件夹下。 最后运行python 03pyqt.py即可加载训练好的模型,对输入的音频进行识别。

2025-02-02

基于python深度学习对数字进行语音识别-含wav音频数据集和训练识别代码.zip

本资源包含数据集有3种数字0、1、2。 通过python、pytorch环境运行。 环境的安装可参考: https://blog.csdn.net/no_work/article/details/145416261 代码整体是非常简便的,总共三个py部分和一个数据集在data文件夹下。 运行python 01数据集文本生成制作.py 会在logs文件夹下生成2个txt文本,分别存放了wav音频的路径和对应的标签。 运行python 02train.py就会训练这个txt文本里面的数据,并将训练的模型与验证集里面的数据进行验证。 最后模型也是保存在logs文件夹下。 最后运行python 03pyqt.py即可加载训练好的模型,对输入的音频进行识别。

2025-02-02

基于python深度学习对几个英文单词语音识别-含音频wav数据集和训练识别代码.zip

本资源包含数据集有几个英文单词-apple、eat和hello。 通过python、pytorch环境运行。 环境的安装可参考: https://blog.csdn.net/no_work/article/details/145416261 代码整体是非常简便的,总共三个py部分和一个数据集在data文件夹下。 运行python 01数据集文本生成制作.py 会在logs文件夹下生成2个txt文本,分别存放了wav音频的路径和对应的标签。 运行python 02train.py就会训练这个txt文本里面的数据,并将训练的模型与验证集里面的数据进行验证。 最后模型也是保存在logs文件夹下。 最后运行python 03pyqt.py即可加载训练好的模型,对输入的音频进行识别。

2025-02-02

基于python深度学习识别狗的声音-含数据集和训练识别代码.zip

本资源包含数据集有狗的两种声音-嘶吼声和汪汪声。 通过python、pytorch环境运行。 环境的安装可参考: https://blog.csdn.net/no_work/article/details/145416261 代码整体是非常简便的,总共三个py部分和一个数据集在data文件夹下。 运行python 01数据集文本生成制作.py 会在logs文件夹下生成2个txt文本,分别存放了wav音频的路径和对应的标签。 运行python 02train.py就会训练这个txt文本里面的数据,并将训练的模型与验证集里面的数据进行验证。 最后模型也是保存在logs文件夹下。 最后运行python 03pyqt.py即可加载训练好的模型,对输入的音频进行识别。

2025-02-02

基于python深度学习识别猫的声音-含数据集和训练识别代码.zip

本资源包含数据集有猫的三种声音-高音声、哈气声和喵呜声。 通过python、pytorch环境运行。 环境的安装可参考: https://blog.csdn.net/no_work/article/details/145416261 代码整体是非常简便的,总共三个py部分和一个数据集在data文件夹下。 运行python 01数据集文本生成制作.py 会在logs文件夹下生成2个txt文本,分别存放了wav音频的路径和对应的标签。 运行python 02train.py就会训练这个txt文本里面的数据,并将训练的模型与验证集里面的数据进行验证。 最后模型也是保存在logs文件夹下。 最后运行python 03pyqt.py即可加载训练好的模型,对输入的音频进行识别。

2025-02-02

基于python深度学习对墙体裂缝图像分割检测-含摄像头识别-yolo11代码含数据集和训练代码和pyqt界面.zip

本代码是基于python pytorch环境安装的。 下载本代码后,有个环境安装的requirement.txt文本,环境需要自行安装。 或可直接参考下面博文进行环境安装(目标检测和图像分割的环境是一样的,代码结构也是一样的)。 https://blog.csdn.net/no_work/article/details/144331388 安装好环境之后, 代码只需要依次运行 01划分数据集.py 02train.py 和03pyqt.py

2025-01-28

基于python深度学习对积水图像分割检测-含摄像头识别-yolo11代码含数据集可训练有pyqt界面.zip

本代码是基于python pytorch环境安装的。 下载本代码后,有个环境安装的requirement.txt文本,环境需要自行安装。 或可直接参考下面博文进行环境安装(目标检测和图像分割的环境是一样的,代码结构部分也是一样)。 https://blog.csdn.net/no_work/article/details/144331388 安装好环境之后, 代码只需要依次运行 01划分数据集.py 02train.py 和03pyqt.py

2025-01-28

基于python深度学习对花卉图像分割识别-含摄像头识别-yolo11图像分割代码-含数据集-和训练-和pyqt界面识别.zip

本代码是基于python pytorch环境安装的。 下载本代码后,有个环境安装的requirement.txt文本,环境需要自行安装。 或可直接参考下面博文进行环境安装(目标检测和图像分割的环境是一样的,代码的组成部分也是一样的)。 https://blog.csdn.net/no_work/article/details/144331388 安装好环境之后, 代码只需要依次运行 01划分数据集.py 02train.py 和03pyqt.py

2025-01-28

墙体裂缝图像分割数据集-可用于yolo8、yolo11等代码训练使用

本代码的数据集是墙体裂缝图像分割数据集,内含json格式和yolo格式数据集-但不含代码 原图在segment/img文件夹下,json格式文件在segment/json文件下(使用labelme打标得到), yolo格式的数据集在segment\seg文件夹下 数据集是墙体裂缝图像分割数据集。

2025-01-28

积水图像分割检测数据集-可用于yolo8、yolo11等代码的图像分割训练

本代码的数据集是积水图像分割检测数据集,内含json格式和yolo格式数据集-但不含代码 原图在segment/img文件夹下,json格式文件在segment/json文件下, yolo格式的数据集在segment\seg文件夹下 数据集是积水图像分割数据集。

2025-01-28

花卉图像分割数据集-可用在yolo8和yolo11等代码中训练使用

本代码的数据集是花卉图像分割数据集,内含json格式和yolo格式数据集-但不含代码 原图在segment/img文件夹下,json格式文件在segment/json文件下, yolo格式的数据集在segment\seg文件夹下 数据集是花卉(玫瑰和雏菊)图像分割数据集。

2025-01-28

resnet模型-通过CNN训练识别真假图片-不含数据集图片-含逐行注释和说明文档.zip

本代码是基于python pytorch环境安装的。 可参考博文进行安装环境运行代码-但需要先自行收集好图片放到对应文件夹下: https://blog.csdn.net/no_work/article/details/139246467 首先是代码的整体介绍 总共是3个py文件,十分的简便 本代码是不含数据集图片的,下载本代码后需要自行搜集图片放到对应的文件夹下即可 需要我们往每个文件夹下搜集来图片放到对应文件夹下,每个对应的文件夹里面也有一张提示图,提示图片放的位置 然后我们需要将搜集来的图片,直接放到对应的文件夹下,就可以对代码进行训练了。 运行01生成txt.py,是将数据集文件夹下的图片路径和对应的标签生成txt格式,划分了训练集和验证集 运行02CNN训练数据集.py,会自动读取txt文本内的内容进行训练,这里是适配了数据集的分类文件夹个数,即使增加了分类文件夹,也不需要修改代码即可训练 训练过程中会有训练进度条,可以查看大概训练的时长,每个epoch训练完后会显示准确率和损失值 训练结束后,会保存log日志,记录每个epoch的准确率和损失值 最后训练的模型会保

2025-01-26

densenet模型-基于卷积神经网络识别真假人脸-不含数据集图片-含逐行注释和说明文档.zip

本代码是基于python pytorch环境安装的。 可参考博文进行安装环境运行代码-但需要先自行收集好图片放到对应文件夹下: https://blog.csdn.net/no_work/article/details/139246467 首先是代码的整体介绍 总共是3个py文件,十分的简便 本代码是不含数据集图片的,下载本代码后需要自行搜集图片放到对应的文件夹下即可 需要我们往每个文件夹下搜集来图片放到对应文件夹下,每个对应的文件夹里面也有一张提示图,提示图片放的位置 然后我们需要将搜集来的图片,直接放到对应的文件夹下,就可以对代码进行训练了。 运行01生成txt.py,是将数据集文件夹下的图片路径和对应的标签生成txt格式,划分了训练集和验证集 运行02CNN训练数据集.py,会自动读取txt文本内的内容进行训练,这里是适配了数据集的分类文件夹个数,即使增加了分类文件夹,也不需要修改代码即可训练 训练过程中会有训练进度条,可以查看大概训练的时长,每个epoch训练完后会显示准确率和损失值 训练结束后,会保存log日志,记录每个epoch的准确率和损失值 最后训练的模型会保

2025-01-26

densenet模型-基于深度学习对脸部是否化妆识别-不含数据集图片-含逐行注释和说明文档.zip

本代码是基于python pytorch环境安装的。 可参考博文进行安装环境运行代码-但需要先自行收集好图片放到对应文件夹下: https://blog.csdn.net/no_work/article/details/139246467 首先是代码的整体介绍 总共是3个py文件,十分的简便 本代码是不含数据集图片的,下载本代码后需要自行搜集图片放到对应的文件夹下即可 需要我们往每个文件夹下搜集来图片放到对应文件夹下,每个对应的文件夹里面也有一张提示图,提示图片放的位置 然后我们需要将搜集来的图片,直接放到对应的文件夹下,就可以对代码进行训练了。 运行01生成txt.py,是将数据集文件夹下的图片路径和对应的标签生成txt格式,划分了训练集和验证集 运行02CNN训练数据集.py,会自动读取txt文本内的内容进行训练,这里是适配了数据集的分类文件夹个数,即使增加了分类文件夹,也不需要修改代码即可训练 训练过程中会有训练进度条,可以查看大概训练的时长,每个epoch训练完后会显示准确率和损失值 训练结束后,会保存log日志,记录每个epoch的准确率和损失值 最后训练的模型会保

2025-01-26

resnet模型-基于图像分类算法对瓶子类别识别-不含数据集图片-含逐行注释和说明文档.zip

本代码是基于python pytorch环境安装的。 可参考博文进行安装环境运行代码-但需要先自行收集好图片放到对应文件夹下: https://blog.csdn.net/no_work/article/details/139246467 首先是代码的整体介绍 总共是3个py文件,十分的简便 本代码是不含数据集图片的,下载本代码后需要自行搜集图片放到对应的文件夹下即可 需要我们往每个文件夹下搜集来图片放到对应文件夹下,每个对应的文件夹里面也有一张提示图,提示图片放的位置 然后我们需要将搜集来的图片,直接放到对应的文件夹下,就可以对代码进行训练了。 运行01生成txt.py,是将数据集文件夹下的图片路径和对应的标签生成txt格式,划分了训练集和验证集 运行02CNN训练数据集.py,会自动读取txt文本内的内容进行训练,这里是适配了数据集的分类文件夹个数,即使增加了分类文件夹,也不需要修改代码即可训练 训练过程中会有训练进度条,可以查看大概训练的时长,每个epoch训练完后会显示准确率和损失值 训练结束后,会保存log日志,记录每个epoch的准确率和损失值 最后训练的模型会保

2025-01-26

shufflenet模型-python训练识别脸部是否带装饰-不含数据集图片-含逐行注释和说明文档.zip

本代码是基于python pytorch环境安装的。 可参考博文进行安装环境运行代码-但需要先自行收集好图片放到对应文件夹下: https://blog.csdn.net/no_work/article/details/139246467 首先是代码的整体介绍 总共是3个py文件,十分的简便 本代码是不含数据集图片的,下载本代码后需要自行搜集图片放到对应的文件夹下即可 需要我们往每个文件夹下搜集来图片放到对应文件夹下,每个对应的文件夹里面也有一张提示图,提示图片放的位置 然后我们需要将搜集来的图片,直接放到对应的文件夹下,就可以对代码进行训练了。 运行01生成txt.py,是将数据集文件夹下的图片路径和对应的标签生成txt格式,划分了训练集和验证集 运行02CNN训练数据集.py,会自动读取txt文本内的内容进行训练,这里是适配了数据集的分类文件夹个数,即使增加了分类文件夹,也不需要修改代码即可训练 训练过程中会有训练进度条,可以查看大概训练的时长,每个epoch训练完后会显示准确率和损失值 训练结束后,会保存log日志,记录每个epoch的准确率和损失值 最后训练的模型会保

2025-01-26

resnet模型-通过CNN卷积神经网络的是否可回收垃圾分类识别-不含数据集图片-含逐行注释和说明文档.zip

本代码是基于python pytorch环境安装的。 可参考博文进行安装环境运行代码-但需要先自行收集好图片放到对应文件夹下: https://blog.csdn.net/no_work/article/details/139246467 首先是代码的整体介绍 总共是3个py文件,十分的简便 本代码是不含数据集图片的,下载本代码后需要自行搜集图片放到对应的文件夹下即可 需要我们往每个文件夹下搜集来图片放到对应文件夹下,每个对应的文件夹里面也有一张提示图,提示图片放的位置 然后我们需要将搜集来的图片,直接放到对应的文件夹下,就可以对代码进行训练了。 运行01生成txt.py,是将数据集文件夹下的图片路径和对应的标签生成txt格式,划分了训练集和验证集 运行02CNN训练数据集.py,会自动读取txt文本内的内容进行训练,这里是适配了数据集的分类文件夹个数,即使增加了分类文件夹,也不需要修改代码即可训练 训练过程中会有训练进度条,可以查看大概训练的时长,每个epoch训练完后会显示准确率和损失值 训练结束后,会保存log日志,记录每个epoch的准确率和损失值 最后训练的模型会保

2025-01-26

shufflenet模型-图像分类算法对是否AI图片生成的识别-不含数据集图片-含逐行注释和说明文档.zip

本代码是基于python pytorch环境安装的。 可参考博文进行安装环境运行代码-但需要先自行收集好图片放到对应文件夹下: https://blog.csdn.net/no_work/article/details/139246467 首先是代码的整体介绍 总共是3个py文件,十分的简便 本代码是不含数据集图片的,下载本代码后需要自行搜集图片放到对应的文件夹下即可 需要我们往每个文件夹下搜集来图片放到对应文件夹下,每个对应的文件夹里面也有一张提示图,提示图片放的位置 然后我们需要将搜集来的图片,直接放到对应的文件夹下,就可以对代码进行训练了。 运行01生成txt.py,是将数据集文件夹下的图片路径和对应的标签生成txt格式,划分了训练集和验证集 运行02CNN训练数据集.py,会自动读取txt文本内的内容进行训练,这里是适配了数据集的分类文件夹个数,即使增加了分类文件夹,也不需要修改代码即可训练 训练过程中会有训练进度条,可以查看大概训练的时长,每个epoch训练完后会显示准确率和损失值 训练结束后,会保存log日志,记录每个epoch的准确率和损失值 最后训练的模型会保

2025-01-26

resnet模型-图像分类算法对植物识别-不含数据集图片-含逐行注释和说明文档.zip

本代码是基于python pytorch环境安装的。 可参考博文进行安装环境运行代码-但需要先自行收集好图片放到对应文件夹下: https://blog.csdn.net/no_work/article/details/139246467 首先是代码的整体介绍 总共是3个py文件,十分的简便 本代码是不含数据集图片的,下载本代码后需要自行搜集图片放到对应的文件夹下即可 需要我们往每个文件夹下搜集来图片放到对应文件夹下,每个对应的文件夹里面也有一张提示图,提示图片放的位置 然后我们需要将搜集来的图片,直接放到对应的文件夹下,就可以对代码进行训练了。 运行01生成txt.py,是将数据集文件夹下的图片路径和对应的标签生成txt格式,划分了训练集和验证集 运行02CNN训练数据集.py,会自动读取txt文本内的内容进行训练,这里是适配了数据集的分类文件夹个数,即使增加了分类文件夹,也不需要修改代码即可训练 训练过程中会有训练进度条,可以查看大概训练的时长,每个epoch训练完后会显示准确率和损失值 训练结束后,会保存log日志,记录每个epoch的准确率和损失值 最后训练的模型会保

2025-01-26

vgg模型-基于深度学习AI算法对农作物识别-不含数据集图片-含逐行注释和说明文档.zip

本代码是基于python pytorch环境安装的。 可参考博文进行安装环境运行代码-但需要先自行收集好图片放到对应文件夹下: https://blog.csdn.net/no_work/article/details/139246467 首先是代码的整体介绍 总共是3个py文件,十分的简便 本代码是不含数据集图片的,下载本代码后需要自行搜集图片放到对应的文件夹下即可 需要我们往每个文件夹下搜集来图片放到对应文件夹下,每个对应的文件夹里面也有一张提示图,提示图片放的位置 然后我们需要将搜集来的图片,直接放到对应的文件夹下,就可以对代码进行训练了。 运行01生成txt.py,是将数据集文件夹下的图片路径和对应的标签生成txt格式,划分了训练集和验证集 运行02CNN训练数据集.py,会自动读取txt文本内的内容进行训练,这里是适配了数据集的分类文件夹个数,即使增加了分类文件夹,也不需要修改代码即可训练 训练过程中会有训练进度条,可以查看大概训练的时长,每个epoch训练完后会显示准确率和损失值 训练结束后,会保存log日志,记录每个epoch的准确率和损失值 最后训练的模型会保

2025-01-26

resnet模型-基于图像分类算法对深度学习的天气现象识别-不含数据集图片-含逐行注释和说明文档.zip

本代码是基于python pytorch环境安装的。 可参考博文进行安装环境运行代码-但需要先自行收集好图片放到对应文件夹下: https://blog.csdn.net/no_work/article/details/139246467 首先是代码的整体介绍 总共是3个py文件,十分的简便 本代码是不含数据集图片的,下载本代码后需要自行搜集图片放到对应的文件夹下即可 需要我们往每个文件夹下搜集来图片放到对应文件夹下,每个对应的文件夹里面也有一张提示图,提示图片放的位置 然后我们需要将搜集来的图片,直接放到对应的文件夹下,就可以对代码进行训练了。 运行01生成txt.py,是将数据集文件夹下的图片路径和对应的标签生成txt格式,划分了训练集和验证集 运行02CNN训练数据集.py,会自动读取txt文本内的内容进行训练,这里是适配了数据集的分类文件夹个数,即使增加了分类文件夹,也不需要修改代码即可训练 训练过程中会有训练进度条,可以查看大概训练的时长,每个epoch训练完后会显示准确率和损失值 训练结束后,会保存log日志,记录每个epoch的准确率和损失值 最后训练的模型会保

2025-01-26

shufflenet模型-python语言pytorch框架训练识别运输方式图像-不含数据集图片-含逐行注释和说明文档.zip

本代码是基于python pytorch环境安装的。 可参考博文进行安装环境运行代码-但需要先自行收集好图片放到对应文件夹下: https://blog.csdn.net/no_work/article/details/139246467 首先是代码的整体介绍 总共是3个py文件,十分的简便 本代码是不含数据集图片的,下载本代码后需要自行搜集图片放到对应的文件夹下即可 需要我们往每个文件夹下搜集来图片放到对应文件夹下,每个对应的文件夹里面也有一张提示图,提示图片放的位置 然后我们需要将搜集来的图片,直接放到对应的文件夹下,就可以对代码进行训练了。 运行01生成txt.py,是将数据集文件夹下的图片路径和对应的标签生成txt格式,划分了训练集和验证集 运行02CNN训练数据集.py,会自动读取txt文本内的内容进行训练,这里是适配了数据集的分类文件夹个数,即使增加了分类文件夹,也不需要修改代码即可训练 训练过程中会有训练进度条,可以查看大概训练的时长,每个epoch训练完后会显示准确率和损失值 训练结束后,会保存log日志,记录每个epoch的准确率和损失值 最后训练的模型会保

2025-01-26

shufflenet模型-CNN图像分类识别手势类别-不含数据集图片-含逐行注释和说明文档.zip

本代码是基于python pytorch环境安装的。 可参考博文进行安装环境运行代码-但需要先自行收集好图片放到对应文件夹下: https://blog.csdn.net/no_work/article/details/139246467 首先是代码的整体介绍 总共是3个py文件,十分的简便 本代码是不含数据集图片的,下载本代码后需要自行搜集图片放到对应的文件夹下即可 需要我们往每个文件夹下搜集来图片放到对应文件夹下,每个对应的文件夹里面也有一张提示图,提示图片放的位置 然后我们需要将搜集来的图片,直接放到对应的文件夹下,就可以对代码进行训练了。 运行01生成txt.py,是将数据集文件夹下的图片路径和对应的标签生成txt格式,划分了训练集和验证集 运行02CNN训练数据集.py,会自动读取txt文本内的内容进行训练,这里是适配了数据集的分类文件夹个数,即使增加了分类文件夹,也不需要修改代码即可训练 训练过程中会有训练进度条,可以查看大概训练的时长,每个epoch训练完后会显示准确率和损失值 训练结束后,会保存log日志,记录每个epoch的准确率和损失值 最后训练的模型会保

2025-01-26

mobilenet模型-python训练识别行为类型-不含数据集图片-含逐行注释和说明文档.zip

本代码是基于python pytorch环境安装的。 可参考博文进行安装环境运行代码-但需要先自行收集好图片放到对应文件夹下: https://blog.csdn.net/no_work/article/details/139246467 首先是代码的整体介绍 总共是3个py文件,十分的简便 本代码是不含数据集图片的,下载本代码后需要自行搜集图片放到对应的文件夹下即可 需要我们往每个文件夹下搜集来图片放到对应文件夹下,每个对应的文件夹里面也有一张提示图,提示图片放的位置 然后我们需要将搜集来的图片,直接放到对应的文件夹下,就可以对代码进行训练了。 运行01生成txt.py,是将数据集文件夹下的图片路径和对应的标签生成txt格式,划分了训练集和验证集 运行02CNN训练数据集.py,会自动读取txt文本内的内容进行训练,这里是适配了数据集的分类文件夹个数,即使增加了分类文件夹,也不需要修改代码即可训练 训练过程中会有训练进度条,可以查看大概训练的时长,每个epoch训练完后会显示准确率和损失值 训练结束后,会保存log日志,记录每个epoch的准确率和损失值 最后训练的模型会保

2025-01-26

vgg模型-基于深度学习对人物表情识别-不含数据集图片-含逐行注释和说明文档.zip

本代码是基于python pytorch环境安装的。 可参考博文进行安装环境运行代码-但需要先自行收集好图片放到对应文件夹下: https://blog.csdn.net/no_work/article/details/139246467 首先是代码的整体介绍 总共是3个py文件,十分的简便 本代码是不含数据集图片的,下载本代码后需要自行搜集图片放到对应的文件夹下即可 需要我们往每个文件夹下搜集来图片放到对应文件夹下,每个对应的文件夹里面也有一张提示图,提示图片放的位置 然后我们需要将搜集来的图片,直接放到对应的文件夹下,就可以对代码进行训练了。 运行01生成txt.py,是将数据集文件夹下的图片路径和对应的标签生成txt格式,划分了训练集和验证集 运行02CNN训练数据集.py,会自动读取txt文本内的内容进行训练,这里是适配了数据集的分类文件夹个数,即使增加了分类文件夹,也不需要修改代码即可训练 训练过程中会有训练进度条,可以查看大概训练的时长,每个epoch训练完后会显示准确率和损失值 训练结束后,会保存log日志,记录每个epoch的准确率和损失值 最后训练的模型会保

2025-01-26

densenet模型-基于深度学习识别燃料-不含数据集图片-含逐行注释和说明文档.zip

本代码是基于python pytorch环境安装的。 可参考博文进行安装环境运行代码-但需要先自行收集好图片放到对应文件夹下: https://blog.csdn.net/no_work/article/details/139246467 首先是代码的整体介绍 总共是3个py文件,十分的简便 本代码是不含数据集图片的,下载本代码后需要自行搜集图片放到对应的文件夹下即可 需要我们往每个文件夹下搜集来图片放到对应文件夹下,每个对应的文件夹里面也有一张提示图,提示图片放的位置 然后我们需要将搜集来的图片,直接放到对应的文件夹下,就可以对代码进行训练了。 运行01生成txt.py,是将数据集文件夹下的图片路径和对应的标签生成txt格式,划分了训练集和验证集 运行02CNN训练数据集.py,会自动读取txt文本内的内容进行训练,这里是适配了数据集的分类文件夹个数,即使增加了分类文件夹,也不需要修改代码即可训练 训练过程中会有训练进度条,可以查看大概训练的时长,每个epoch训练完后会显示准确率和损失值 训练结束后,会保存log日志,记录每个epoch的准确率和损失值 最后训练的模型会保

2025-01-26

mobilenet模型-基于人工智能的卷积网络训练识别学生课堂行为分析-不含数据集图片-含逐行注释和说明文档.zip

本代码是基于python pytorch环境安装的。 可参考博文进行安装环境运行代码-但需要先自行收集好图片放到对应文件夹下: https://blog.csdn.net/no_work/article/details/139246467 首先是代码的整体介绍 总共是3个py文件,十分的简便 本代码是不含数据集图片的,下载本代码后需要自行搜集图片放到对应的文件夹下即可 需要我们往每个文件夹下搜集来图片放到对应文件夹下,每个对应的文件夹里面也有一张提示图,提示图片放的位置 然后我们需要将搜集来的图片,直接放到对应的文件夹下,就可以对代码进行训练了。 运行01生成txt.py,是将数据集文件夹下的图片路径和对应的标签生成txt格式,划分了训练集和验证集 运行02CNN训练数据集.py,会自动读取txt文本内的内容进行训练,这里是适配了数据集的分类文件夹个数,即使增加了分类文件夹,也不需要修改代码即可训练 训练过程中会有训练进度条,可以查看大概训练的时长,每个epoch训练完后会显示准确率和损失值 训练结束后,会保存log日志,记录每个epoch的准确率和损失值 最后训练的模型会保

2025-01-26

resnet模型-基于深度学习识别人物动态行为-不含数据集图片-含逐行注释和说明文档.zip

本代码是基于python pytorch环境安装的。 可参考博文进行安装环境运行代码-但需要先自行收集好图片放到对应文件夹下: https://blog.csdn.net/no_work/article/details/139246467 首先是代码的整体介绍 总共是3个py文件,十分的简便 本代码是不含数据集图片的,下载本代码后需要自行搜集图片放到对应的文件夹下即可 需要我们往每个文件夹下搜集来图片放到对应文件夹下,每个对应的文件夹里面也有一张提示图,提示图片放的位置 然后我们需要将搜集来的图片,直接放到对应的文件夹下,就可以对代码进行训练了。 运行01生成txt.py,是将数据集文件夹下的图片路径和对应的标签生成txt格式,划分了训练集和验证集 运行02CNN训练数据集.py,会自动读取txt文本内的内容进行训练,这里是适配了数据集的分类文件夹个数,即使增加了分类文件夹,也不需要修改代码即可训练 训练过程中会有训练进度条,可以查看大概训练的时长,每个epoch训练完后会显示准确率和损失值 训练结束后,会保存log日志,记录每个epoch的准确率和损失值 最后训练的模型会保

2025-01-26

mobilenet模型-基于深度学习AI算法对在旅游活动类型识别-不含数据集图片-含逐行注释和说明文档.zip

本代码是基于python pytorch环境安装的。 可参考博文进行安装环境运行代码-但需要先自行收集好图片放到对应文件夹下: https://blog.csdn.net/no_work/article/details/139246467 首先是代码的整体介绍 总共是3个py文件,十分的简便 本代码是不含数据集图片的,下载本代码后需要自行搜集图片放到对应的文件夹下即可 需要我们往每个文件夹下搜集来图片放到对应文件夹下,每个对应的文件夹里面也有一张提示图,提示图片放的位置 然后我们需要将搜集来的图片,直接放到对应的文件夹下,就可以对代码进行训练了。 运行01生成txt.py,是将数据集文件夹下的图片路径和对应的标签生成txt格式,划分了训练集和验证集 运行02CNN训练数据集.py,会自动读取txt文本内的内容进行训练,这里是适配了数据集的分类文件夹个数,即使增加了分类文件夹,也不需要修改代码即可训练 训练过程中会有训练进度条,可以查看大概训练的时长,每个epoch训练完后会显示准确率和损失值 训练结束后,会保存log日志,记录每个epoch的准确率和损失值 最后训练的模型会保

2025-01-26

mobilenet模型-基于深度学习AI算法对遥感土地利用类型识别-不含数据集图片-含逐行注释和说明文档.zip

本代码是基于python pytorch环境安装的。 可参考博文进行安装环境运行代码-但需要先自行收集好图片放到对应文件夹下: https://blog.csdn.net/no_work/article/details/139246467 首先是代码的整体介绍 总共是3个py文件,十分的简便 本代码是不含数据集图片的,下载本代码后需要自行搜集图片放到对应的文件夹下即可 需要我们往每个文件夹下搜集来图片放到对应文件夹下,每个对应的文件夹里面也有一张提示图,提示图片放的位置 然后我们需要将搜集来的图片,直接放到对应的文件夹下,就可以对代码进行训练了。 运行01生成txt.py,是将数据集文件夹下的图片路径和对应的标签生成txt格式,划分了训练集和验证集 运行02CNN训练数据集.py,会自动读取txt文本内的内容进行训练,这里是适配了数据集的分类文件夹个数,即使增加了分类文件夹,也不需要修改代码即可训练 训练过程中会有训练进度条,可以查看大概训练的时长,每个epoch训练完后会显示准确率和损失值 训练结束后,会保存log日志,记录每个epoch的准确率和损失值 最后训练的模型会保

2025-01-26

mobilenet模型-python语言pytorch框架的图像分类食物类型识别-不含数据集图片-含逐行注释和说明文档.zip

本代码是基于python pytorch环境安装的。 可参考博文进行安装环境运行代码-但需要先自行收集好图片放到对应文件夹下: https://blog.csdn.net/no_work/article/details/139246467 首先是代码的整体介绍 总共是3个py文件,十分的简便 本代码是不含数据集图片的,下载本代码后需要自行搜集图片放到对应的文件夹下即可 需要我们往每个文件夹下搜集来图片放到对应文件夹下,每个对应的文件夹里面也有一张提示图,提示图片放的位置 然后我们需要将搜集来的图片,直接放到对应的文件夹下,就可以对代码进行训练了。 运行01生成txt.py,是将数据集文件夹下的图片路径和对应的标签生成txt格式,划分了训练集和验证集 运行02CNN训练数据集.py,会自动读取txt文本内的内容进行训练,这里是适配了数据集的分类文件夹个数,即使增加了分类文件夹,也不需要修改代码即可训练 训练过程中会有训练进度条,可以查看大概训练的时长,每个epoch训练完后会显示准确率和损失值 训练结束后,会保存log日志,记录每个epoch的准确率和损失值 最后训练的模型会保

2025-01-26

mobilenet模型-基于深度学习AI算法对家庭装修图像识别-不含数据集图片-含逐行注释和说明文档.zip

本代码是基于python pytorch环境安装的。 可参考博文进行安装环境运行代码-但需要先自行收集好图片放到对应文件夹下: https://blog.csdn.net/no_work/article/details/139246467 首先是代码的整体介绍 总共是3个py文件,十分的简便 本代码是不含数据集图片的,下载本代码后需要自行搜集图片放到对应的文件夹下即可 需要我们往每个文件夹下搜集来图片放到对应文件夹下,每个对应的文件夹里面也有一张提示图,提示图片放的位置 然后我们需要将搜集来的图片,直接放到对应的文件夹下,就可以对代码进行训练了。 运行01生成txt.py,是将数据集文件夹下的图片路径和对应的标签生成txt格式,划分了训练集和验证集 运行02CNN训练数据集.py,会自动读取txt文本内的内容进行训练,这里是适配了数据集的分类文件夹个数,即使增加了分类文件夹,也不需要修改代码即可训练 训练过程中会有训练进度条,可以查看大概训练的时长,每个epoch训练完后会显示准确率和损失值 训练结束后,会保存log日志,记录每个epoch的准确率和损失值 最后训练的模型会保

2025-01-26

vgg模型-通过CNN卷积神经网络的图表信息类别识别-不含数据集图片-含逐行注释和说明文档.zip

本代码是基于python pytorch环境安装的。 可参考博文进行安装环境运行代码-但需要先自行收集好图片放到对应文件夹下: https://blog.csdn.net/no_work/article/details/139246467 首先是代码的整体介绍 总共是3个py文件,十分的简便 本代码是不含数据集图片的,下载本代码后需要自行搜集图片放到对应的文件夹下即可 需要我们往每个文件夹下搜集来图片放到对应文件夹下,每个对应的文件夹里面也有一张提示图,提示图片放的位置 然后我们需要将搜集来的图片,直接放到对应的文件夹下,就可以对代码进行训练了。 运行01生成txt.py,是将数据集文件夹下的图片路径和对应的标签生成txt格式,划分了训练集和验证集 运行02CNN训练数据集.py,会自动读取txt文本内的内容进行训练,这里是适配了数据集的分类文件夹个数,即使增加了分类文件夹,也不需要修改代码即可训练 训练过程中会有训练进度条,可以查看大概训练的时长,每个epoch训练完后会显示准确率和损失值 训练结束后,会保存log日志,记录每个epoch的准确率和损失值 最后训练的模型会保

2025-01-26

mobilenet模型-python语言pytorch框架的图像分类城市公共设施类别识别-不含数据集图片-含逐行注释和说明文档.zip

本代码是基于python pytorch环境安装的。 可参考博文进行安装环境运行代码-但需要先自行收集好图片放到对应文件夹下: https://blog.csdn.net/no_work/article/details/139246467 首先是代码的整体介绍 总共是3个py文件,十分的简便 本代码是不含数据集图片的,下载本代码后需要自行搜集图片放到对应的文件夹下即可 需要我们往每个文件夹下搜集来图片放到对应文件夹下,每个对应的文件夹里面也有一张提示图,提示图片放的位置 然后我们需要将搜集来的图片,直接放到对应的文件夹下,就可以对代码进行训练了。 运行01生成txt.py,是将数据集文件夹下的图片路径和对应的标签生成txt格式,划分了训练集和验证集 运行02CNN训练数据集.py,会自动读取txt文本内的内容进行训练,这里是适配了数据集的分类文件夹个数,即使增加了分类文件夹,也不需要修改代码即可训练 训练过程中会有训练进度条,可以查看大概训练的时长,每个epoch训练完后会显示准确率和损失值 训练结束后,会保存log日志,记录每个epoch的准确率和损失值 最后训练的模型会保

2025-01-26

vgg模型-基于人工智能的卷积网络训练识别交通标志-不含数据集图片-含逐行注释和说明文档.zip

本代码是基于python pytorch环境安装的。 可参考博文进行安装环境运行代码-但需要先自行收集好图片放到对应文件夹下: https://blog.csdn.net/no_work/article/details/139246467 首先是代码的整体介绍 总共是3个py文件,十分的简便 本代码是不含数据集图片的,下载本代码后需要自行搜集图片放到对应的文件夹下即可 需要我们往每个文件夹下搜集来图片放到对应文件夹下,每个对应的文件夹里面也有一张提示图,提示图片放的位置 然后我们需要将搜集来的图片,直接放到对应的文件夹下,就可以对代码进行训练了。 运行01生成txt.py,是将数据集文件夹下的图片路径和对应的标签生成txt格式,划分了训练集和验证集 运行02CNN训练数据集.py,会自动读取txt文本内的内容进行训练,这里是适配了数据集的分类文件夹个数,即使增加了分类文件夹,也不需要修改代码即可训练 训练过程中会有训练进度条,可以查看大概训练的时长,每个epoch训练完后会显示准确率和损失值 训练结束后,会保存log日志,记录每个epoch的准确率和损失值 最后训练的模型会保

2025-01-26

resnet模型-基于深度学习对枇杷果实病害识别-不含数据集图片-含逐行注释和说明文档.zip

本代码是基于python pytorch环境安装的。 可参考博文进行安装环境运行代码-但需要先自行收集好图片放到对应文件夹下: https://blog.csdn.net/no_work/article/details/139246467 首先是代码的整体介绍 总共是3个py文件,十分的简便 本代码是不含数据集图片的,下载本代码后需要自行搜集图片放到对应的文件夹下即可 需要我们往每个文件夹下搜集来图片放到对应文件夹下,每个对应的文件夹里面也有一张提示图,提示图片放的位置 然后我们需要将搜集来的图片,直接放到对应的文件夹下,就可以对代码进行训练了。 运行01生成txt.py,是将数据集文件夹下的图片路径和对应的标签生成txt格式,划分了训练集和验证集 运行02CNN训练数据集.py,会自动读取txt文本内的内容进行训练,这里是适配了数据集的分类文件夹个数,即使增加了分类文件夹,也不需要修改代码即可训练 训练过程中会有训练进度条,可以查看大概训练的时长,每个epoch训练完后会显示准确率和损失值 训练结束后,会保存log日志,记录每个epoch的准确率和损失值 最后训练的模型会保

2025-01-26

resnet模型-python语言pytorch框架训练识别玉米病害-不含数据集图片-含逐行注释和说明文档.zip

本代码是基于python pytorch环境安装的。 可参考博文进行安装环境运行代码-但需要先自行收集好图片放到对应文件夹下: https://blog.csdn.net/no_work/article/details/139246467 首先是代码的整体介绍 总共是3个py文件,十分的简便 本代码是不含数据集图片的,下载本代码后需要自行搜集图片放到对应的文件夹下即可 需要我们往每个文件夹下搜集来图片放到对应文件夹下,每个对应的文件夹里面也有一张提示图,提示图片放的位置 然后我们需要将搜集来的图片,直接放到对应的文件夹下,就可以对代码进行训练了。 运行01生成txt.py,是将数据集文件夹下的图片路径和对应的标签生成txt格式,划分了训练集和验证集 运行02CNN训练数据集.py,会自动读取txt文本内的内容进行训练,这里是适配了数据集的分类文件夹个数,即使增加了分类文件夹,也不需要修改代码即可训练 训练过程中会有训练进度条,可以查看大概训练的时长,每个epoch训练完后会显示准确率和损失值 训练结束后,会保存log日志,记录每个epoch的准确率和损失值 最后训练的模型会保

2025-01-26

shufflenet模型-基于卷积神经网络识别香蕉叶部病害-不含数据集图片-含逐行注释和说明文档.zip

本代码是基于python pytorch环境安装的。 可参考博文进行安装环境运行代码-但需要先自行收集好图片放到对应文件夹下: https://blog.csdn.net/no_work/article/details/139246467 首先是代码的整体介绍 总共是3个py文件,十分的简便 本代码是不含数据集图片的,下载本代码后需要自行搜集图片放到对应的文件夹下即可 需要我们往每个文件夹下搜集来图片放到对应文件夹下,每个对应的文件夹里面也有一张提示图,提示图片放的位置 然后我们需要将搜集来的图片,直接放到对应的文件夹下,就可以对代码进行训练了。 运行01生成txt.py,是将数据集文件夹下的图片路径和对应的标签生成txt格式,划分了训练集和验证集 运行02CNN训练数据集.py,会自动读取txt文本内的内容进行训练,这里是适配了数据集的分类文件夹个数,即使增加了分类文件夹,也不需要修改代码即可训练 训练过程中会有训练进度条,可以查看大概训练的时长,每个epoch训练完后会显示准确率和损失值 训练结束后,会保存log日志,记录每个epoch的准确率和损失值 最后训练的模型会保

2025-01-26

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除