
机器学习
文章平均质量分 57
还能坚持
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
简单理解mmdetection中的registry类
原文:https://zhuanlan.zhihu.com/p/1002104521、注册器类(Registry)使用该类构建9个注册类实例,其实就是做一个划分管理,比如,backbone 作为一族(vgg,resnet等)BACKBONES = Registry('backbone')NECKS = Registry('neck')ROI_EXTRACTORS = Registry('roi_extractor')SHARED_HEADS = Registry('shared_head')H转载 2021-09-03 11:56:25 · 476 阅读 · 0 评论 -
label smooth的理解
label smooth的理解转载 2021-05-29 19:54:21 · 249 阅读 · 1 评论 -
Pytorch深度学习—正则化之weight decay权值衰减
Pytorch中的L2正则项—weight decay本节的主要内容分为2大部分:正则化与偏差—方差分解1、正则化Regularization定义2、什么是方差?3、正则化RegularizationPytorch中的L2正则项—weight decay。1、正则化与偏差—方差分解1.1 正则化Regularization定义所谓正则化就是一系列用来减少方差的策略、方法。1.2 什么是方差?误差可理解为:偏差、方差与噪声之和。即误差=偏差+方差+噪声。偏差度量了学习算法的期望预测转载 2021-01-06 20:29:05 · 2399 阅读 · 0 评论 -
Normalization(标准化)的原理和实现详解
Normalization这个名词在很多地方都会出现,但是对于数据却有两种截然不同且容易混淆的处理过程。对于某个多特征的机器学习数据集来说,第一种Normalization是对于将数据进行预处理时进行的操作,是对于数据集的各个特征分别进行处理,主要包括min-max normalization、Z-score normalization、 log函数转换和atan函数转换等。第二种Normalization对于每个样本缩放到单位范数(每个样本的范数为1),主要有L1-normalization(L1范数)、转载 2020-12-26 19:56:50 · 9810 阅读 · 1 评论 -
Resnet_50网络结构图
https://blog.csdn.net/Seven_year_Promise/article/details/69358681转载 2020-11-19 10:50:43 · 2830 阅读 · 0 评论 -
残差网络resnet源码详细解读
1、torchvision的介绍torchvision 是 pytorch 中一个很好用的包,主要由 3 个子包,分别是 torchvision.datasets,torchvision.models 和 torchvision.transforms参考官网:http://pytorch.org/docs/master/torchvision/index.html代码:https://github.com/pytorch/vision/tree/master/torchvision1.1 torch原创 2020-11-19 10:44:44 · 1419 阅读 · 3 评论 -
彻底理解softmax
原文1、Logistic(对数几率回归)1.1、形式1.2、损失函数1.3、求导2、softmax2.1、讲解在cs231n中,对softmax可以有一个非常好的认识,但是对具体求导一带而过,只说很简单。。。下面先摘抄cs231n上关于softmax的描述,再进行推导。2.2、推导下面介绍推导过程。可以参考这篇文章...转载 2020-09-15 09:34:58 · 187 阅读 · 0 评论 -
从EM算法理解k-means与GMM的关系
EM(期望最大化)算法解决的是在概率模型中含有无法观测的隐含变量情况下的参数估计问题,EM算法只保证收敛到局部最优解。EM算法是在最大化目标函数时, 先固定一个变量使整...转载 2020-02-27 22:54:05 · 578 阅读 · 0 评论 -
实例分割模型Mask R-CNN详解:从R-CNN,Fast R-CNN,Faster R-CNN再到Mask R-CNN
Mask R-CNN是ICCV 2017的best paper,彰显了机器学习计算机视觉领域在2017年的最新成果。在机器学习2017年的最新...转载 2020-02-26 22:54:23 · 233 阅读 · 0 评论 -
机器学习碎片知识
...转载 2019-12-16 21:18:57 · 399 阅读 · 0 评论 -
pycharm:ImportError: cannot import name 'Random'
pycharm中 ImportError: cannot import name 'Random’的解决方案今天在使用pycharm的时候,遇到了一个很明显的错误:cannot import name ‘Random’,一开始以为是自己的安装库出现了问题,后来想到了自己在此路径下有一个文件random.py,就是这个文件和我的“random”库出现了矛盾,后来删除了就好了。原因:因为工作目录包...转载 2019-11-26 12:49:07 · 2011 阅读 · 0 评论 -
解决python调用TensorFlow时出现FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecate
版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声...转载 2019-11-26 10:03:52 · 234 阅读 · 0 评论 -
numpy.random中的Permutation()
Permutation()函数的意思的打乱原来数据中元素的顺序。 1.输入为整数,返回一个打乱顺序的数组 2.输入为数组/list,返回顺序打乱的数组/list与Shuffle()的区别: Shuffle()在原有数据的基础上操作,打乱元素的顺序,无返回值 Permutation,不是在原有数据的基础上操作,而是返回一个新的打乱顺序的数组例如:# -*- coding: ut...转载 2019-11-16 00:15:31 · 452 阅读 · 0 评论 -
用python简单处理图片(4):图像中的像素访问
前面的一些例子中,我们都是利用Image.open()来打开一幅图像,然后直接对这个PIL对象进行操作。如果只是简单的操作还可以,但是如果操作稍微复杂一些,就比较吃力了。因此,通常我们加载完图片后,都是把图片转换成矩阵来进行更加复杂的操作。 python中利用numpy库和scipy库来进行各种数据操作和科学计算。我们可以通过pip来直接安装这两个库pip install numpyp...转载 2019-11-15 23:54:30 · 173 阅读 · 0 评论 -
np.reshape增加一维的用法
数组imgimg = np.reshape(img,img.shape+(1,)),当元组只有一个元素时需要加个逗号把10×10的数组增加一维,变成10×10×1的数组。img = np.reshape(img,(1,)+img.shape)把10×10的数组增加一维,变成1×10×10的数组。...转载 2019-11-15 23:42:09 · 2323 阅读 · 0 评论 -
Python 基础——range() 与 np.arange()
range()返回的是range object,而np.arange()返回的是numpy.ndarray(type(np.arange(10)) == np.ndarray) 1) 两者都是均匀地(evenly)等分区间; 2) range尽可用于迭代,而np.arange作用远不止于此,它是一个序列,可被当做向量使用。range()不支持步长为小数,np.arange...转载 2019-11-15 23:25:41 · 631 阅读 · 0 评论 -
条件概率、全概率、先验概率、后验概率、类条件概率
注:A表示事情的结果,B={B1,B2…}表示事情发生的原因条件概率在原因B发生的条件下,结果A发生的概率:全概率假如结果A发生的原因有B1,B2…等多种原因,则全概率公式如下:先验概率 事情还没有发生,根据以往经验和分析得到的概率,在事情发生之前,得到的事情(结果)发生的概率。比如,一次抛硬币实验,我们认为正面朝上的概率是0.5,这就是一种先验概率,在抛硬币前,我们只有常识。...原创 2019-10-14 21:18:38 · 11445 阅读 · 2 评论