C++笔试有n个台阶,如果一次只能上1个或2个台阶,求一共有多少种方法

求解这个问题可以使用动态规划,具体思路如下:

1、定义状态:设dp[i]表示到达第i个台阶的方法总数。

2、初始化状态:根据题目要求,当i=1时,只有一种上台阶的方法;当i=2时,有两种上台阶的方法。因此,初始化dp[1]=1和dp[2]=2。

3、状态转移方程:对于第i个台阶,可以从第i-1个台阶跨1步上来,也可以从第i-2个台阶跨2步上来。因此,到达第i个台阶的方法总数等于到达第i-1个台阶的方法总数加上到达第i-2个台阶的方法总数,即dp[i] = dp[i-1] + dp[i-2]。

4、遍历计算:从第3个台阶开始,依次计算dp[i]的值,直到计算到第n个台阶为止。

5、返回结果:返回dp[n],即为到达第n个台阶的方法总数。

下面是用C++实现的代码示例:

#include <iostream>
using namespace std;

int climbStairs(int n) {
   
   
    if (n <= 2)
        return n;
    
    
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

白话Learning

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值