求解这个问题可以使用动态规划,具体思路如下:
1、定义状态:设dp[i]表示到达第i个台阶的方法总数。
2、初始化状态:根据题目要求,当i=1时,只有一种上台阶的方法;当i=2时,有两种上台阶的方法。因此,初始化dp[1]=1和dp[2]=2。
3、状态转移方程:对于第i个台阶,可以从第i-1个台阶跨1步上来,也可以从第i-2个台阶跨2步上来。因此,到达第i个台阶的方法总数等于到达第i-1个台阶的方法总数加上到达第i-2个台阶的方法总数,即dp[i] = dp[i-1] + dp[i-2]。
4、遍历计算:从第3个台阶开始,依次计算dp[i]的值,直到计算到第n个台阶为止。
5、返回结果:返回dp[n],即为到达第n个台阶的方法总数。
下面是用C++实现的代码示例:
#include <iostream>
using namespace std;
int climbStairs(int n) {
if (n <= 2)
return n;