LBM学习记录3 Python实现D2Q9圆柱绕流

在https://blog.csdn.net/weixin_58913471/article/details/117561995?spm=1001.2101.3001.6650.1&utm_medium=distribute.pc_relevant.none-task-blog-2%7Edefault%7ECTRLIST%7Edefault-1.no_search_link&depth_1-utm_source=distribute.pc_relevant.none-task-blog-2%7Edefault%7ECTRLIST%7Edefault-1.no_search_link 基础上进行理解,重写,补充。

from numpy import *
import matplotlib.pyplot as plt
from matplotlib import cm

雷诺数(Re)是反应粘性和惯性之间平衡的无量纲数。
Re=uLνRe = u\frac{L}{\nu}Re=uνL
流体速度u,特征长度LLLν\nuν流体粘度
低速、高粘度和封闭的流体条件导致低Re,粘性力占主导地位。如果Re<<1,这种流体被称为Stokes或者Creeping flow. 由于孔径小,这种流动在许多多孔介质中的液体中是很常见的。
omega 松弛频率
如果ω\omegaω很小,流体只能缓慢地收敛到其平衡状态:高粘性。
流体的粘性与松弛参数ω\omegaω成反比。
ν=δtcs2(1ω−12) \nu=\delta t c_{s}^{2}\left(\frac{1}{\omega}-\frac{1}{2}\right) ν=δtcs2(ω121)
其中,cs2=13c_{s}^{2}=\frac{1}{3}cs2=31

maxIter = 200000  # 迭代次数
Re = 220.0         # 雷诺数
uLB = 0.04        # 模型的入口速度
nx, ny = 420, 180 # x, y轴长度
ly = ny-1         # 用于计算入口,为模型增加扰动,当雷诺数较小时,计算缺少扰动
cx, cy, r = nx//4, ny//2, ny//9  # 圆柱坐标
nulb = uLB*r/Re   # 粘性系数
omega = 1/(3*nulb+0.5)  # 松弛频率

tit_iti 用于补偿不同长度的速度

流入条件

密度

2   5   8
\  | /
1–>4<–7
/  |  \
0   3   6

因为

ρ(x,t)=∑i=08fiin(x,t)\rho(\boldsymbol{x}, t)=\sum_{i=0}^{8} f_{i}^{\mathrm{in}}(\boldsymbol{x}, t)ρ(x,t)=i=08fiin(x,t)

u(x,t)=1ρ(x,t)δxδt∑i=08vifiin(x,t)\boldsymbol{u}(\boldsymbol{x}, t)=\frac{1}{\rho(\boldsymbol{x}, t)} \frac{\delta x}{\delta t} \sum_{i=0}^{8} \boldsymbol{v}_{i} f_{i}^{\mathrm{in}}(\boldsymbol{x}, t)u(x,t)=ρ(x,t)1δtδxi=08vifiin(x,t)

定义

ρ1=f0+f1+f2( unknown )ρ2=f3+f4+f5 (known) ρ3=f6+f7+f8( known ) \begin{aligned} &\rho_{1}=f_{0}+f_{1}+f_{2}(\text { unknown }) \\ &\rho_{2}=f_{3}+f_{4}+f_{5} \text { (known) } \\ &\rho_{3}=f_{6}+f_{7}+f_{8}(\text { known }) \end{aligned} ρ1=f0+f1+f2( unknown )ρ2=f3+f4+f5 (known) ρ3=f6+f7+f8( known )

同时

ρ=ρ1+ρ2+ρ3ρux=ρ1−ρ3 \begin{aligned} &\rho=\rho_{1}+\rho_{2}+\rho_{3} \\ &\rho u_{x}=\rho_{1}-\rho_{3} \end{aligned} ρ=ρ1+ρ2+ρ3ρux=ρ1ρ3

uxu_xux速度xxx方向的分量

因此

ρ=ρ2+2ρ31−ux\rho=\frac{\rho_{2}+2 \rho_{3}}{1-u_{x}}ρ=1uxρ2+2ρ3

rho[0,:] = 1/(1-u[0,0,:])*(sum(fin[col2,0,:],axis=0)+2*sum(fin[col3,0,:],axis=0))

流入侧f0 f1 f2的密度分布函数

E(i,ρ,u)=ρti(1+vi⋅ucs2+12cs4(vi⋅u)2−12cs2∣u∣2)E(i, \rho, \boldsymbol{u})=\rho t_{i}\left(1+\frac{\boldsymbol{v}_{\boldsymbol{i}} \cdot \boldsymbol{u}}{c_{s}^{2}}+\frac{1}{2 c_{s}^{4}}\left(\boldsymbol{v}_{\boldsymbol{i}} \cdot \boldsymbol{u}\right)^{2}-\frac{1}{2 c_{s}^{2}}|\boldsymbol{u}|^{2}\right)E(i,ρ,u)=ρti(1+cs2viu+2cs41(viu)22cs21u2)

密度总是接近于他们的平衡状态。
首先将未知密度分布函数初始化为其平衡值。
随后,检查相反分布函数偏离平衡的程度,再加上这个值作为修正。

f0in=E(0,ρ,u)+(f8in−E(8,ρ,u))f1in=E(1,ρ,u)+(f7in−E(7,ρ,u))f2in=E(2,ρ,u)+(f6in−E(6,ρ,u)) \begin{aligned} f_{0}^{\mathrm{in}} &=E(0, \rho, \boldsymbol{u})+\left(f_{8}^{\mathrm{in}}-E(8, \rho, \boldsymbol{u})\right) \\ f_{1}^{\mathrm{in}} &=E(1, \rho, \boldsymbol{u})+\left(f_{7}^{\mathrm{in}}-E(7, \rho, \boldsymbol{u})\right) \\ f_{2}^{\mathrm{in}} &=E(2, \rho, \boldsymbol{u})+\left(f_{6}^{\mathrm{in}}-E(6, \rho, \boldsymbol{u})\right) \end{aligned} f0inf1inf2in=E(0,ρ,u)+(f8inE(8,ρ,u))=E(1,ρ,u)+(f7inE(7,ρ,u))=E(2,ρ,u)+(f6inE(6,ρ,u))

fin[[0,1,2],0,:] = feq[[0,1,2],0,:] + fin[[8,7,6],0,:] - feq[[8,7,6],0,:]
v = array([[1,1], [1,0], [1,-1],
           [0,1], [0,0], [0,-1],
           [-1,1], [-1,0], [-1,-1]])

t = array([1/36, 1/9, 1/36,
          1/9, 4/9, 1/9,
          1/36, 1/9, 1/36])

col1 = array([0, 1, 2])
col2 = array([3, 4, 5])
col3 = array([6, 7, 8])

密度

ρ(x,t)=∑i=08fiin(x,t)\rho(\boldsymbol{x}, t)=\sum_{i=0}^{8} f_{i}^{\mathrm{in}}(\boldsymbol{x}, t)ρ(x,t)=i=08fiin(x,t)

rho = zeros((nx, ny))
for ix in range(nx):
    for iy in range(ny):
        rho[ix, iy] = 0
        for i in range(9):
            rho[ix, iy] += fin[i, ix, iy]

压力
压力正比于密度,根据理想气体状态方程,在等温气体中
p=cs2ρp=c_{s}^{2} \rhop=cs2ρ
在D2Q9模型中
cs2=13δx2δt2c_{s}^{2}=\frac{1}{3} \frac{\delta x^{2}}{\delta t^{2}}cs2=31δt2δx2

速度

6   3   0
\  | /
7<–4–>1
/  |  \
8   5   2

v0v_0v0(1,1), v1v_1v1(1,0), v2v_2v2(1,-1)
v3v_3v3(0,1), v4v_4v4(0,0), v5v_5v5(0,-1)
v6v_6v6(-1,1), v7v_7v7(-1,0), v8v_8v8(-1,-1)

u(x,t)=1ρ(x,t)δxδt∑i=08vifiin(x,t)\boldsymbol{u}(\boldsymbol{x}, t)=\frac{1}{\rho(\boldsymbol{x}, t)} \frac{\delta x}{\delta t} \sum_{i=0}^{8} \boldsymbol{v}_{i} f_{i}^{\mathrm{in}}(\boldsymbol{x}, t)u(x,t)=ρ(x,t)1δtδxi=08vifiin(x,t)

v = np.array([[1,1], [1,0], [1,-1], [0,1], [0,0], [0,-1], [-1,1], [-1,0], [-1,-1]])
u = zeros((2, nx, ny))
for ix in range(nx):
    for iy in range(ny):
        u[0, ix, iy] = 0
        u[1, ix, iy] = 0
        for i in range(9):
            u[0,ix,iy] += v[i,0]*fin[i,ix,iy]
            u[1,ix,iy] += v[i,1]*fin[i,ix,iy]
def macroscopic(fin):
    rho = sum(fin, axis=0)
    u = zeros((2, nx, ny))
    for i in range(9):
        u[0,:,:] += v[i,0] * fin[i,:,:]
        u[1,:,:] += v[i,1] * fin[i,:,:]
    u /= rho
    return rho, u

平衡方程
E(i,ρ,u)=ρti(1+vi⋅ucs2+12cs4(vi⋅u)2−12cs2∣u∣2)E(i, \rho, \boldsymbol{u})=\rho t_{i}\left(1+\frac{\boldsymbol{v}_{\boldsymbol{i}} \cdot \boldsymbol{u}}{c_{s}^{2}}+\frac{1}{2 c_{s}^{4}}\left(\boldsymbol{v}_{\boldsymbol{i}} \cdot \boldsymbol{u}\right)^{2}-\frac{1}{2 c_{s}^{2}}|\boldsymbol{u}|^{2}\right)E(i,ρ,u)=ρti(1+cs2viu+2cs41(viu)22cs21u2)

# 平衡态计算
def equilibrium(rho, u):
    usqr = 3/2 * (u[0]**2 + u[1]**2)
    feq = zeros((9, nx, ny))
    for i in range(9):
        cu = 3 * (v[i,0]*u[0,:,:] + v[i,1]*u[1,:,:])
        feq[i,:,:] = rho*t[i] * (1 + cu + 0.5*cu**2 - usqr)
    return feq

碰撞

fiout −fiin =−ω(fiin −E(i,ρ,u⃗)) f_{i}^{\text {out }}-f_{i}^{\text {in }}=-\omega\left(f_{i}^{\text {in }}-E(i, \rho, \vec{u})\right) fiout fiin =ω(fiin E(i,ρ,u))

fout = fin-omega*(fin-eq)

迁移

for ix in range(nx):
    for iy in range(ny):
        for i in range(9):
            next_x = ix + v[i,0]
            if next_x<0:
                next_x = nx-1
            if next_x>=nx:
                next_y = 0
            
            next_y = iy + v[i,1]
            if next_y<0:
                next_y = ny-1
            if next_y>=ny:
                next_y = 0    
            
            fin[i,next_x,next_y] = fout[i,ix,iy]

np.roll(a,shift,axis=None) 将数组a,沿着axis方向,滚动shift长度
可改写成

for i in range(9):
    fin[i, :, :] = roll(roll(fout[i,:,:],v[i,0], axis=0), v[i,1], axis=1)

边界条件
Bounce-back BCs
反弹边界条件是处理静止无滑移壁面的一类常用格式,是指当离散分布函数到达边界节点时,将沿着其进入的方向散射回流体,包括on-grid bounce-back(边界与晶格点对齐)和 mid-grid bounce-back(边界在界外节点和界内节点之间的中心)。

on-grid bounce-back

on-grid

mid-grid bounce-back

mid-grid

fiin (x,t+1)=fjout (x,t)f_{i}^{\text {in }}(x, t+1)=f_{j}^{\text {out }}(x, t)fiin (x,t+1)=fjout (x,t)

vi=−vjv_{i}=-v_{j}vi=vj

for i in range(9):
    fout[i,obstacle] = fin[8-i, obstacle]
def obstacle_fun(x, y):
    return (x-cx)**2 + (y-cy)**2 < r**2

fromfunction从函数中创建数组,返回数组,符合条件值为True,不符合为False。

obstacle = fromfunction(obstacle_fun, (nx, ny))
# 初始速度曲线:几乎为零,有一个轻微的扰动来触发不稳定。
def inivel(d, x, y):
    return (1-d) * uLB * (1+1e-4*sin(y/ly*2*pi))
vel = fromfunction(inivel, (2, nx, ny))
# 以给定的速度初始化处于平衡状态的种群
fin = equilibrium(1, vel)
for time in range(maxIter):
    # 右边界分布函数
    fin[col3, -1, :] = fin[col3, -2, :]
    
    #计算宏观密度和速度
    rho, u = macroscopic(fin)
    
    # 重新计算左边界的分布函数
    u[:, 0, :] = vel[:, 0, :]
    rho[0,:] = 1/(1-u[0,0,:]) * (sum(fin[col2,0,:], axis=0) + 2*sum(fin[col3,0,:], axis=0))
    
    # 计算平衡态
    feq = equilibrium(rho, u)
    fin[[0,1,2],0,:] = feq[[0,1,2],0,:]+fin[[8,7,6],0,:]-feq[[8,7,6],0,:]
    
    # 碰撞过程
    fout = fin - omega * (fin - feq)
    
    # 对圆柱内节点进行反弹
    for i in range(9):
        fout[i, obstacle] = fin[8-i, obstacle]
    
    # 扩散过程
    for i in range(9):
        fin[i, :, :] = roll(roll(fout[i,:,:],v[i,0], axis=0), v[i,1], axis=1)
        
    # 可视化
    if (time%100==0):
        plt.clf()
        plt.imshow(sqrt(u[0]**2+u[1]**2).transpose(), cmap=cm.Reds)
        plt.savefig("/share/home/yszhang/PBS/LBM/pic/"+str(time//100)+".jpg")
import cv2

file_dir = '/pic/'
video = cv2.VideoWriter('video.avi',cv2.VideoWriter_fourcc(*'MJPG'),5,(1280,720))

for i in range(2000):
    img = cv2.imread(file_dir+str(i)+'.jpg')     
    img = cv2.resize(img,(1280,720))
    video.write(img)

video.release()
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值