滑动窗口
滑动窗口这类问题一般需要用到 双指针 来进行求解,另外一类比较特殊则是需要用到特定的数据结构,像是 sorted_map。
后者有特定的题型,后面会列出来,但是,对于前者,题形变化非常的大,一般都是基于字符串和数组的,所以我们重点总结这种基于双指针的滑动窗口问题。
题目问法大致有这几种:
- 给两个字符串,一长一短,问其中短的是否在长的中满足一定的条件存在,例如:
- 求长的的最短子串,该子串必须涵盖短的的所有字符
- 短的的 anagram 在长的中出现的所有位置
- ...
- 给一个字符串或者数组,问这个字符串的子串或者子数组是否满足一定的条件,例如:
- 含有少于 k 个不同字符的最长子串
- 所有字符都只出现一次的最长子串
- ...
解题思路与模板
根据前面的描述,滑动窗口就是这类题目的重点,换句话说,窗口的移动 就是重点!
我们要控制前后指针的移动来控制窗口,这样的移动是有条件的,也就是要想清楚在什么情况下移动,在什么情况下保持不变。
我的思路是保证右指针每次往前移动一格,每次移动都会有新的一个元素进入窗口,这时条件可能就会发生改变,然后根据当前条件来决定左指针是否移动,以及移动多少格。
我写来一个模版在这里,可以参考:
public int slidingWindowTemplate(String[] a, ...) {
// 输入参数有效性判断
if (...) {
...
}
// 申请一个散列,用于记录窗口中具体元素的个数情况
// 这里用数组的形式呈现,也可以考虑其他数据结构
int[] hash = new int[...];
// 预处理(可省), 一般情况是改变 hash
...
// l 表示左指针
// count 记录当前的条件,具体根据题目要求来定义
// result 用来存放结果
int l = 0, count = ..., result = ...;
for (int r = 0; r < A.length; ++r) {
// 更新新元素在散列中的数量
hash[A[r]]--;
// 根据窗口的变更结果来改变条件值
if (hash[A[r]] == ...) {
count++;
}
// 如果当前条件不满足,移动左指针直至条件满足为止
while (count > K || ...) {
...
if (...) {
count--;
}
hash[A[l]]++;
l++;
}
// 更新结果
results = ...
}
return results;
}
具体题目分析与代码
1. 找到字符串中所有字母异位词
题目:
给定一个字符串 s 和一个非空字符串 p,找到 s 中所有是 p 的字母异位词的子串,返回这些子串的起始索引。
字符串只包含小写英文字母,并且字符串 s 和 p 的长度都不超过 20100 。
代码:
public List<Integer> findAnagrams(String s, String p) {
// 输入参数有效性判断
if (s.length() < p.length()) {
return new ArrayList<Integer>();
}
// 申请一个散列,用于记录窗口中具体元素的个数情况
// 这里用数组的形式呈现,也可以考虑其他数据结构
char[] sArr = s.toCharArray();
char[] pArr = p.toCharArray();
int[] hash = new int[26];
for (int i = 0; i < pArr.length; ++i) {
hash[pArr[i] - 'a']++;
}
// l 表示左指针
// count 记录当前的条件,具体根据题目要求来定义
// result 用来存放结果
List<Integer> results = new ArrayList<>();
int l = 0, count = 0, pLength = p.length();
for (int r = 0; r < sArr.length; ++r) {
// 更新新元素在散列中的数量
hash[sArr[r] - 'a']--;
// 根据窗口的变更结果来改变条件值
if (hash[sArr[r] - 'a'] >= 0) {
count++;
}
// 如果当前条件不满足,移动左指针直至条件满足为止
if (r > pLength - 1) {
hash[sArr[l] - 'a']++;
if (hash[sArr[l] - 'a'] > 0) {
count--;
}
l++;
}
// 更新结果
if (count == pLength) {
results.add(l);
}
}
return results;
}