滑动窗口类算法题总结

滑动窗口

滑动窗口这类问题一般需要用到 双指针 来进行求解,另外一类比较特殊则是需要用到特定的数据结构,像是 sorted_map。

后者有特定的题型,后面会列出来,但是,对于前者,题形变化非常的大,一般都是基于字符串和数组的,所以我们重点总结这种基于双指针的滑动窗口问题。

题目问法大致有这几种:

  • 给两个字符串,一长一短,问其中短的是否在长的中满足一定的条件存在,例如:
  • 求长的的最短子串,该子串必须涵盖短的的所有字符
  • 短的的 anagram 在长的中出现的所有位置
  • ...
  • 给一个字符串或者数组,问这个字符串的子串或者子数组是否满足一定的条件,例如:
  • 含有少于 k 个不同字符的最长子串
  • 所有字符都只出现一次的最长子串
  • ...

解题思路与模板

根据前面的描述,滑动窗口就是这类题目的重点,换句话说,窗口的移动 就是重点!

我们要控制前后指针的移动来控制窗口,这样的移动是有条件的,也就是要想清楚在什么情况下移动,在什么情况下保持不变。

我的思路是保证右指针每次往前移动一格,每次移动都会有新的一个元素进入窗口,这时条件可能就会发生改变,然后根据当前条件来决定左指针是否移动,以及移动多少格。

我写来一个模版在这里,可以参考:

public int slidingWindowTemplate(String[] a, ...) {
    // 输入参数有效性判断
    if (...) {
        ...
    }

    // 申请一个散列,用于记录窗口中具体元素的个数情况
    // 这里用数组的形式呈现,也可以考虑其他数据结构
    int[] hash = new int[...];

    // 预处理(可省), 一般情况是改变 hash
    ...

    // l 表示左指针
    // count 记录当前的条件,具体根据题目要求来定义
    // result 用来存放结果
    int l = 0, count = ..., result = ...;
    for (int r = 0; r < A.length; ++r) {
        // 更新新元素在散列中的数量
        hash[A[r]]--;

        // 根据窗口的变更结果来改变条件值
        if (hash[A[r]] == ...) {
            count++;
        }

        // 如果当前条件不满足,移动左指针直至条件满足为止
        while (count > K || ...) {
            ...
            if (...) {
                count--;
            }
            hash[A[l]]++;
            l++;
        }

        // 更新结果
        results = ...
    }

    return results;
}

具体题目分析与代码

1. 找到字符串中所有字母异位词

题目:

给定一个字符串 s 和一个非空字符串 p,找到 s 中所有是 p 的字母异位词的子串,返回这些子串的起始索引。

字符串只包含小写英文字母,并且字符串 s 和 p 的长度都不超过 20100 。

代码:

public List<Integer> findAnagrams(String s, String p) {
    // 输入参数有效性判断
    if (s.length() < p.length()) {
        return new ArrayList<Integer>();
    }

    // 申请一个散列,用于记录窗口中具体元素的个数情况
    // 这里用数组的形式呈现,也可以考虑其他数据结构
    char[] sArr = s.toCharArray();
    char[] pArr = p.toCharArray();

    int[] hash = new int[26];

    for (int i = 0; i < pArr.length; ++i) {
        hash[pArr[i] - 'a']++;
    }

    // l 表示左指针
    // count 记录当前的条件,具体根据题目要求来定义
    // result 用来存放结果
    List<Integer> results = new ArrayList<>();
    int l = 0, count = 0, pLength = p.length();

    for (int r = 0; r < sArr.length; ++r) {
        // 更新新元素在散列中的数量
        hash[sArr[r] - 'a']--;

        // 根据窗口的变更结果来改变条件值
        if (hash[sArr[r] - 'a'] >= 0) {
            count++;
        }

        // 如果当前条件不满足,移动左指针直至条件满足为止
        if (r > pLength - 1) {
            hash[sArr[l] - 'a']++;

            if (hash[sArr[l] - 'a'] > 0) {
                count--;
            }

            l++;
        }

        // 更新结果
        if (count == pLength) {
            results.add(l);
        }
    }

    return results;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值