欢迎关注我的公众号 [极智视界],获取我的更多技术分享

传送:极智项目 | YOLO11目标检测算法训练+TensorRT部署实战

大家好,我是极智视界,本文分享实战项目之YOLO11目标检测算法训练+TensorRT部署实战。

1. 项目介绍

2. 算法训练

(1) 数据集整备

数据集放在 datasets/coco_minitrain_10k 数据集目录结构如下:

datasets/
└── coco_mintrain_10k/
    ├── annotations/
    │   ├── instances_train2017.json
    │   ├── instances_val2017.json
    │   ├── ... (其他标注文件)
    ├── train2017/
    │   ├── 000000000001.jpg
    │   ├── ... (其他训练图像)
    ├── val2017/
    │   ├── 000000000001.jpg
    │   ├── ... (其他验证图像)
    └── test2017/
        ├── 000000000001.jpg
        ├── ... (其他测试图像)
  • 1.
  • 2.
  • 3.
  • 4.
  • 5.
  • 6.
  • 7.
  • 8.
  • 9.
  • 10.
  • 11.
  • 12.
  • 13.
  • 14.
  • 15.
(2) 训练环境搭建
conda creaet-n yolo11_py310 python=3.10

conda activate yolo11_py310

pip install -U -r train/requirements.txt
  • 1.
  • 2.
  • 3.
  • 4.
  • 5.
(3) 推理测试

先下载预训练权重:

bash0_download_wgts.sh
  • 1.

执行预测测试:

bash