一、前置准备
1.1 API Key 获取
这里以 6AI 平台:https://api.6ai.chat 为例
完成账号注册登录(获取基础调用额度,以平台规则为准);
1.2 核心功能(技术参数)
模型:gemini-2.5-flash-image-preview(Gemini 图片编辑专项模型)
能力:文本指令驱动图像编辑(元素增删、风格迁移、物体移除)
输入格式:JPEG/PNG(单图≤5MB,避免超时)
输出格式:Base64 编码字符串(支持直接解码渲染 / 存储)
1.3 必备技术工具
图像 Base64 编码:Python(base64库)/JavaScript(btoa);
API 请求:curl(命令行)、Postman/Apifox(调试)、Python(requests)/JS(axios);
Base64 解码:编程语言原生库(优先),用于二进制图像数据还原。
二、核心参数说明
6AI网关完全兼容Gemini原生协议,仅需将「请求URL替换为6AI的BaseURL」并「使用6AI API Key鉴权」,其余参数与Gemini原生定义一致。以下是关键参数详解:
参数位置 | 参数名 | 是否必需 | 说明 | 示例值 |
---|---|---|---|---|
请求URL | - | 必需 | 6AI BaseURL + Gemini图片编辑接口路径 | https://api.6ai.chat/v1beta/models/gemini-2.5-flash-image-preview:generateContent |
Header | Content-Type | 必需 | 请求体格式,固定为JSON | application/json |
Header | Authorization | 必需 | 6AI鉴权信息,格式为“Bearer + 6AI API Key” | Bearer sk-xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx |
Header | Accept | 可选 | 响应格式,默认JSON | application/json |
Body | contents | 必需 | 对话内容数组,包含用户角色、文本指令和图片数据 | 见下文“请求体示例” |
Body → contents[0] | role | 必需 | 角色标识,固定为“user”(表示用户输入) | user |
Body → contents[0].parts | - | 必需 | 内容片段数组,需包含「文本指令」和「图片数据」两个片段 | 见下文“请求体示例” |
Body → parts[0] | text | 必需 | 图片编辑指令,需清晰描述需求(如“添加元素、调整风格”) | Hi, This is a picture of me. Can you add a cute llama next to me. |
Body → parts[1] | inline_data | 必需 | 图片数据对象,包含MIME类型和Base64编码 | {"mime_type": "image/jpeg", "data": "iVBORw0KGgoAAAANSUhEUgAABAAAA..."} |
Body | generationConfig | 必需 | 生成配置,如图片尺寸、质量 | {"width": 1000, "height": 800, "quality": "high"} |
Body | responseModalities | 必需 | 返回模态,固定为图片格式(如JPEG/PNG) | ["image/jpeg"] |
三、详细对接步骤
步骤1:处理图片(转换为Base64编码)
Gemini图片编辑API要求图片以「Base64编码字符串」传入,处理方式如下(以本地图片为例):
- 选择目标图片(如
me.jpg
),建议尺寸不超过5MB(避免请求超时); - 使用在线工具或代码将图片转Base64:
- 在线工具:上传图片后,删除前缀
data:image/jpeg;base64,
,仅保留编码部分; - Python代码(自动编码):
import base64 def image_to_base64(image_path, mime_type): with open(image_path, "rb") as f: return base64.b64encode(f.read()).decode("utf-8") # 示例:处理JPEG图片 base64_img = image_to_base64("me.jpg", "image/jpeg")
- 在线工具:上传图片后,删除前缀
步骤2:构造请求体
根据上述参数,构造完整的JSON请求体(注意Base64字符串需完整,无换行):
{
"contents": [
{
"role": "user",
"parts": [
{
"text": "Hi, This is a picture of me. Can you add a cute llama next to me? The llama should match the photo's warm lighting and not cover my body."
},
{
"inline_data": {
"mime_type": "image/jpeg",
"data": "iVBORw0KGgoAAAANSUhEUgAABAAAAAKoCAIAAABm4BptAAAAiXpUWHRSYXcgcHJvZmlsZSB0eXBlIGlwdGMAAAiZTYwxDgIxDAT7vOKekDjrtV1T0VHwgbtcIiEhgfh/QaDgmGlWW0w6X66n5fl6jNu9p+ULkapDENgzpj+Kl5aFfa6KnYWgSjZjGOiSYRxTY/v8KIijI/rXyc236kHdAK22RvHVummEN+91ML0BQ+siou79WmMAAAKHaVRYdFhNTDpjb20uYWRvYmUueG1wAAAAAAA8P3hwYWNrZXQgYmVnaW49Iu+7vyIgaWQ9Ilc1TTBNcENlaGlIenJlU3pOVGN6a2M5ZCI/PiA8eDp4bXBtZXRhIHhtbG5zOng9ImFkb2JlOm5zOm1ldGEvIiB4OnhtcHRrPSJYTVAgQ29yZSA1LjUuMCI+IDxyZGY6UkRGIHhtbG5zOnJkZj0iaHR0cDovL3d3dy53My5vcmcvMTk5OS8wMi8yMi1yZGYtc3ludGF4LW5zIyI+IDxyZGY6RGVzY3JpcHRpb24gcmRmOmFib3V0PSIiIHhtbG5zOklwdGM0eG1wRXh0PSJodHRwOi8vaXB0Yy5vcmcvc3RkL0lwdGM0eG1wRXh0LzIwMDgtMDItMjkvIiB4bWxuczpwaG90b3Nob3A9Imh0dHA6Ly9ucy5hZG9iZS5jb20vcGhvdG9zaG9wLzEuMC8iIElwdGM0eG1wRXh0OkRpZ2l0YWxTb3VyY2VGaWxlVHlwZT0iaHR0cDovL2N2LmlwdGMub3JnL25ld3Njb2Rlcy9kaWdpdGFsc291cmNldHlwZS90cmFpbmVkQWxnb3JpdGhtaWNNZWRpYSIgSXB0YzR4bXBFeHQ6RGlnaXRhbFNvdXJjZVR5cGU9Imh0dHA6Ly9jdi5pcHRjLm9yZy9uZXdzY29kZXMvZGlnaXRhbHNvdXJjZXR5cGUvdHJhaW5lZEFsZ29yaXRobWljTWVkaWEiIHBob3Rvc2hvcDpDcmVkaXQ9Ik1hZGUgd2l0aCBHb29nbGUgQUkiLz4gPC9yZGY6UkRGPiA8L3g6eG1wbWV0YT4gICA8P3hwYWNrZXQgZW5kPSJ3Ij8+fxJoawAAIABJREFUeJysvdmOZEmSJXaOmrlHZORSVaxuYgZoYvgy/DgCA34nB+ArHwiSwEyj2cPuWjMzNnc3FT6InCOi5p5V1QCtuyLdrt2rKirLkUWXy//0v/20IrgRDCAABAgCAf1LRCA/vPvvG583f2I2VX9BX+6fiurydT/x6uvsp2kdP0V3ndfv2jgang3yuIVAhC7d//LXPm8O0wNccfeTCL9/rJ5i9N+/1N0bRBEIkP1UBJiXWcK941uAS/1E8iNi3PRKhlFyC94RYLn33UTr091Nb0rouG8K7P6X+889l17r0OubiXVH6nxI5jEutFZHHBRCTD4uuh0C2yOpJ6OaulOLKJV8rfT6NzgvoS5FsH9641H/wPkUMIbSD8Qrvh2m+ksa+dZn8uf48P4evqL8tYpMfXhDPf23tHfyGoFYfaNFEd3ChsT4tw/SbJdV3I/Cyja/3wn+L7ffg51kZTsa5n0nk4xp8POu16w7e7i7Ke6aPT5/xZoH33/xlqPz/GMhwYh+Pgqf7adGezyJj3z+r34GbEk25tAA4ZLykMToj2T8rRrzl0k5P7/k+9587s7rFZv+Qndv/GZQT7b/VbmKoL7PRvCXPu3Bp7N1l7PjN/XxAKn78RyacS/avzqev/lz79B/6SYC8aZyvIKrX/Dpv4Ci0b/4uckvuyKxVUh0129+O+PAf8tnEv1vtQHhSczvv3Db3dfpDMOmyuYVcNc4jn6m9b4e9StCDui7g5mprG+yMACOMEbKGHgV/r1WFOPM3cDiTcZHGWPpRSle7Ih9uV5fXl6YpERMrg1vOgmIVz75cBlWKjIbfMPHzEcIDqLjbPY10ETzUc8pMgrBExDbCq32X5Fw38vgV466g4TpzvcvN/WXPr9w861v4Nmb4xlRRr6hB4Pyv2RuGs/EvQnld/emXG7DWvZrl2PFJsKMvycK95HIYQm/BOcKjI9f74Ex+uvrbgOd18ze41WQJSscKnL7WxDrb4PEv3BL3A8pMo5ZaaH9W8bxdyGfW6mRxlv08Hjib6D4lVzvqI1X8nhzVHegNOmJV4o0hvF2e/8/fN7UTV+89bXzrwkMq6zmSJbU+JTlmz3eMe7kwit+Rtw397d9jtvvxM1f7v/tlsr/sak5BmmYeItZfO3w7oIQa9q/PbaI/ZYiEYzGjY03RijF/Dd1RzBiVznkfkTV97+lRT01/Wxdj/Yyr55p5Porfb3NztO8/qr43/xIe/jL4/2LshziP4HprTt/Ae7+Ske/hE8jCZp/Olz4RZrbEx99zw7PmLEvY3BdqHg69QmpzZyk6G2SJgoDc1B4gyeDDzEHHPdVuvB9wy7nQPTMX0L+ovo1NX+zgb9G0TeG89av9eBdgIMTSIdiKNBtstu2enAd/9238DajEXePnNS9tt07ZdA9HaPkP0eS0DRvnJ8Bw28CQFFSMiIjYgHccc3edoYdWciMADMAvgEweLD43JIFHC1kB+HriFfZeEjXGZkesEYo9Uy/U98nmh8t+f6usBBE0hxhQdQg4u2CR9yLeLRfghBUld+Q3yLuCDrd/i/Zx1/BXA83EDkZc/dshoFvmFPKfDoPYU0WxlKfBqaYgVPhpXjb8i5hZxbHOciAUzvmr4V2d1Z0opmVKlhxRXkTCepkU+zsvhqyTbcX76r47DfJJs5qkEHuxIQJWPX3sKQ3hZY/jIDglZuKGM29hdXmIS2riEjd32VPAi9WaoAqQqrJZMSSHd2j35ndRemCTTUv3msSxfDJqHPcMRjQgvUoD5ZK+solgtK6e75m+WEI5k7NOZGNsN78YnzQvm5MACIcyBvSKNaL5lGBmZR4Nmc664NSpg1O2sf0UNpKTbhFQPNMCblTGuHSyWQP2Ihku3Xl+U09bMOa5s+2n1cswzDd1g4Kot1GOZFJ9aumokvtxT8O+hp638Lmv/YJnj23H7FrZDCguB2CrL9S/FcLFkpZ4eWoH99Pct5ZuHtMcR3X3bRValiKnt1o1RtNx8aw30MZdBPPiexkU3mATJtWSYKzZQ/sDsOHOTuWZStGG3b5yYpvT7NpZRnak/3Ygge8uzGNmmURTdVGIuUBbxpG1DOIwd87xYNQ1T4d8FhOQRLYlu/o5m44qkaecMT73qONNwDE0niW24/Zxj2+vlY8Nn8FkLLjQCyws5wOi7BG2c5+prV/uq4OP42Lhd+H4Z7+TdTC5LzxuYOrfQBEqfZdJWQA5p13KAYIyRPzTTHBjU0yUCHj4R4NoccMohQodPd9PMFXY3g11Impdnv2Ca9cHAtc4oTjFgA9N3ZXnws9P4gSMwLgorxAKf2t+BSb//P/+kcHHRNSaNO3Zru9/iZeRxN6BnMDq4d0pybdfcpHThs8oFCzvdUsy3YcQ2bTrPByykZjG3B7NCyv1jRxqrtBvPBiflJar8tEZogt8G7Mr1XoTY1ijQnomUMRVwM22wXJ7Wg0gHsnNezqbuCo/Kq1CYiQAy2NPquhykBeecJXA7vL6F6rQNOVaGXYrJ4Ock+W8RwVmN3ZsdzbvUXf307Dtle8l4vhs4WiqmnJu/ymETYitLhkRXc2afqLn1l7K6yI5shBYceIUwcaT6Kb6WHC8fH50x0VRwN3P72BgffETd7ek320c1egE+ItGfhf7rd/nHYxrrwa1ltE6SYv9ZDAT3A5THuMbrbyFxKWVzQcVFB9BBR/8TQzGcq4Nsp80wWfUjhjrbpj8vyk7e5ibKX0g1zdswPLcW1EdH9zZIFi3l0rY0yHkTRMv6bSlvuG4t/b993Q2t0O+2prO2y0I7QAZeDqwbbRagIYsseT2c6ums7wZB7CmeS2Ev81Jfql36UQ/OVbMObsX3uhYTSv0TtOGG0xRzisOZsDRrbSYOuM1e20kppbE5zn03e+7RykZvAwJ/dbX+wFTxWY9J72NGwTUk5WFwEXu+4JygtK/19VWd7EscCZ2VmKZtb5mOq4xi06rbwbi74oF0o2U8w4PCyxQ0H65MEB1Hdd+NI58/5aA2Py/h5r7m+fJcWU4F+chVM8SUHIlMTpC2Jaft/KEtWhb0S0OVayMoY5UOD4Q9y4q/H0SuyGLVQppZV0sMe0xDGmQXkwAzY3PLWt1A/rysxEs1h+GlR5uuOhA16pllfxWZy905wxJ6xphDkmyX2w77VDFRhMc2VZXJl0UFDZKaAeZjc8nHd7BkPLRP2G2wSOOeMwBuhLcd/4GOVdyjBGdGraYMoZeYrQ9iOj6l+cEC9GFzUS4jUIL0txFL0muZzSvh/ACSGW72pnM2CCXa2MxRFEnrMEd5RTVYoCnlYgjO+vPqG7BJJzLS79qP9VG8bUqa/H/fOv/LUUoWcjWt"
}
}
]
}
],
"generationConfig": {
"width": 1000,
"height": 800,
"quality": "high",
"enableMultiImageGeneration": false
},
"responseModalities": ["image/jpeg"]
}
步骤3:发送请求并处理响应
通过工具或代码发送POST请求,接收响应后解析图片数据。以下是主流工具/语言的实现示例:
示例1:curl命令行(快速测试)
curl --location --request POST 'https://api.6ai.chat/v1beta/models/gemini-2.5-flash-image-preview:generateContent' \
--header 'Authorization: Bearer sk-xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx' \
--header 'Content-Type: application/json' \
--data-raw '{
"contents": [
{
"role": "user",
"parts": [
{
"text": "Hi, This is a picture of me. Can you add a cute llama next to me? The llama should match the photo'\''s warm lighting and not cover my body."
},
{
"inline_data": {
"mime_type": "image/jpeg",
"data": "iVBORw0KGgoAAAANSUhEUgAABAAAAAKoCAIAAABm4BptAAAAiXpUWHRSYXcgcHJvZmlsZSB0eXBlIGlwdGMAAAiZTYwxDgIxDAT7vOKekDjrtV1T0VHwgbtcIiEhgfh/QaDgmGlWW0w6X66n5fl6jNu9p+ULkapDENgzpj+Kl5aFfa6KnYWgSjZjGOiSYRxTY/v8KIijI/rXyc236kHdAK22RvHVummEN+91ML0BQ+siou79WmMAAAKHaVRYdFhNTDpjb20uYWRvYmUueG1wAAAAAAA8P3hwYWNrZXQgYmVnaW49Iu+7vyIgaWQ9Ilc1TTBNcENlaGlIenJlU3pOVGN6a2M5ZCI/PiA8eDp4bXBtZXRhIHhtbG5zOng9ImFkb2JlOm5zOm1ldGEvIiB4OnhtcHRrPSJYTVAgQ29yZSA1LjUuMCI+IDxyZGY6UkRGIHhtbG5zOnJkZj0iaHR0cDovL3d3dy53My5vcmcvMTk5OS8wMi8yMi1yZGYtc3ludGF4LW5zIyI+IDxyZGY6RGVzY3JpcHRpb24gcmRmOmFib3V0PSIiIHhtbG5zOklwdGM0eG1wRXh0PSJodHRwOi8vaXB0Yy5vcmcvc3RkL0lwdGM0eG1wRXh0LzIwMDgtMDItMjkvIiB4bWxuczpwaG90b3Nob3A9Imh0dHA6Ly9ucy5hZG9iZS5jb20vcGhvdG9zaG9wLzEuMC8iIElwdGM0eG1wRXh0OkRpZ2l0YWxTb3VyY2VGaWxlVHlwZT0iaHR0cDovL2N2LmlwdGMub3JnL25ld3Njb2Rlcy9kaWdpdGFsc291cmNldHlwZS90cmFpbmVkQWxnb3JpdGhtaWNNZWRpYSIgSXB0YzR4bXBFeHQ6RGlnaXRhbFNvdXJjZVR5cGU9Imh0dHA6Ly9jdi5pcHRjLm9yZy9uZXdzY29kZXMvZGlnaXRhbHNvdXJjZXR5cGUvdHJhaW5lZEFsZ29yaXRobWljTWVkaWEiIHBob3Rvc2hvcDpDcmVkaXQ9Ik1hZGUgd2l0aCBHb29nbGUgQUkiLz4gPC9yZGY6UkRGPiA8L3g6eG1wbWV0YT4gICA8P3hwYWNrZXQgZW5kPSJ3Ij8+fxJoawAAIABJREFUeJysvdmOZEmSJXaOmrlHZORSVaxuYgZoYvgy/DgCA34nB+ArHwiSwEyj2cPuWjMzNnc3FT6InCOi5p5V1QCtuyLdrt2rKirLkUWXy//0v/20IrgRDCAABAgCAf1LRCA/vPvvG583f2I2VX9BX+6fiurydT/x6uvsp2kdP0V3ndfv2jgang3yuIVAhC7d//LXPm8O0wNccfeTCL9/rJ5i9N+/1N0bRBEIkP1UBJiXWcK941uAS/1E8iNi3PRKhlFyC94RYLn33UTr091Nb0rouG8K7P6X+889l17r0OubiXVH6nxI5jEutFZHHBRCTD4uuh0C2yOpJ6OaulOLKJV8rfT6NzgvoS5FsH9641H/wPkUMIbSD8Qrvh2m+ksa+dZn8uf48P4evqL8tYpMfXhDPf23tHfyGoFYfaNFEd3ChsT4tw/SbJdV3I/Cyja/3wn+L7ffg51kZTsa5n0nk4xp8POu16w7e7i7Ke6aPT5/xZoH33/xlqPz/GMhwYh+Pgqf7adGezyJj3z+r34GbEk25tAA4ZLykMToj2T8rRrzl0k5P7/k+9587s7rFZv+Qndv/GZQT7b/VbmKoL7PRvCXPu3Bp7N1l7PjN/XxAKn78RyacS/avzqev/lz79B/6SYC8aZyvIKrX/Dpv4Ci0b/4uckvuyKxVUh0129+O+PAf8tnEv1vtQHhSczvv3Db3dfpDMOmyuYVcNc4jn6m9b4e9StCDui7g5mprG+yMACOMEbKGHgV/r1WFOPM3cDiTcZHGWPpRSle7Ih9uV5fXl6YpERMrg1vOgmIVz75cBlWKjIbfMPHzEcIDqLjbPY10ETzUc8pMgrBExDbCq32X5Fw38vgV466g4TpzvcvN/WXPr9w861v4Nmb4xlRRr6hB4Pyv2RuGs/EvQnld/emXG7DWvZrl2PFJsKMvycK95HIYQm/BOcKjI9f74Ex+uvrbgOd18ze41WQJSscKnL7WxDrb4PEv3BL3A8pMo5ZaaH9W8bxdyGfW6mRxlv08Hjib6D4lVzvqI1X8nhzVHegNOmJV4o0hvF2e/8/fN7UTV+89bXzrwkMq6zmSJbU+JTlmz3eMe7kwit+Rtw397d9jtvvxM1f7v/tlsr/sak5BmmYeItZfO3w7oIQa9q/PbaI/ZYiEYzGjY03RijF/Dd1RzBiVznkfkTV97+lRT01/Wxdj/Yyr55p5Porfb3NztO8/qr43/xIe/jL4/2LshziP4HprTt/Ae7+Ske/hE8jCZp/Olz4RZrbEx99zw7PmLEvY3BdqHg69QmpzZyk6G2SJgoDc1B4gyeDDzEHHPdVuvB9wy7nQPTMX0L+ovo1NX+zgb9G0TeG89av9eBdgIMTSIdiKNBtstu2enAd/9238DajEXePnNS9tt07ZdA9HaPkP0eS0DRvnJ8Bw28CQFFSMiIjYgHccc3edoYdWciMADMAvgEweLD43JIFHC1kB+HriFfZeEjXGZkesEYo9Uy/U98nmh8t+f6usBBE0hxhQdQg4u2CR9yLeLRfghBUld+Q3yLuCDrd/i/Zx1/BXA83EDkZc/dshoFvmFPKfDoPYU0WxlKfBqaYgVPhpXjb8i5hZxbHOciAUzvmr4V2d1Z0opmVKlhxRXkTCepkU+zsvhqyTbcX76r47DfJJs5qkEHuxIQJWPX3sKQ3hZY/jIDglZuKGM29hdXmIS2riEjd32VPAi9WaoAqQqrJZMSSHd2j35ndRemCTTUv3msSxfDJqHPcMRjQgvUoD5ZK+solgtK6e75m+WEI5k7NOZGNsN78YnzQvm5MACIcyBvSKNaL5lGBmZR4Nmc664NSpg1O2sf0UNpKTbhFQPNMCblTGuHSyWQP2Ihku3Xl+U09bMOa5s+2n1cswzDd1g4Kot1GOZFJ9aumokvtxT8O+hp638Lmv/YJnj23H7FrZDCguB2CrL9S/FcLFkpZ4eWoH99Pct5ZuHtMcR3X3bRValiKnt1o1RtNx8aw30MZdBPPiexkU3mATJtWSYKzZQ/sDsOHOTuWZStGG3b5yYpvT7NpZRnak/3Ygge8uzGNmmURTdVGIuUBbxpG1DOIwd87xYNQ1T4d8FhOQRLYlu/o5m44qkaecMT73qONNwDE0niW24/Zxj2+vlY8Nn8FkLLjQCyws5wOi7BG2c5+prV/uq4OP42Lhd+H4Z7+TdTC5LzxuYOrfQBEqfZdJWQA5p13KAYIyRPzTTHBjU0yUCHj4R4NoccMohQodPd9PMFXY3g11Impdnv2Ca9cHAtc4oTjFgA9N3ZXnws9P4gSMwLgorxAKf2t+BSb//P/+kcHHRNSaNO3Zru9/iZeRxN6BnMDq4d0pybdfcpHThs8oFCzvdUsy3YcQ2bTrPByykZjG3B7NCyv1jRxqrtBvPBiflJar8tEZogt8G7Mr1XoTY1ijQnomUMRVwM22wXJ7Wg0gHsnNezqbuCo/Kq1CYiQAy2NPquhykBeecJXA7vL6F6rQNOVaGXYrJ4Ock+W8RwVmN3ZsdzbvUXf307Dtle8l4vhs4WiqmnJu/ymETYitLhkRXc2afqLn1l7K6yI5shBYceIUwcaT6Kb6WHC8fH50x0VRwN3P72BgffETd7ek320c1egE+ItGfhf7rd/nHYxrrwa1ltE6SYv9ZDAT3A5THuMbrbyFxKWVzQcVFB9BBR/8TQzGcq4Nsp80wWfUjhjrbpj8vyk7e5ibKX0g1zdswPLcW1EdH9zZIFi3l0rY0yHkTRMv6bSlvuG4t/b993Q2t0O+2prO2y0I7QAZeDqwbbRagIYsseT2c6ums7wZB7CmeS2Ev81Jfql36UQ/OVbMObsX3uhYTSv0TtOGG0xRzisOZsDRrbSYOuM1e20kppbE5zn03e+7RykZvAwJ/dbX+wFTxWY9J72NGwTUk5WFwEXu+4JygtK/19VWd7EscCZ2VmKZtb5mOq4xi06rbwbi74oF0o2U8w4PCyxQ0H65MEB1Hdd+NI58/5aA2Py/h5r7m+fJcWU4F+chVM8SUHIlMTpC2Jaft/KEtWhb0S0OVayMoY5UOD4Q9y4q/H0SuyGLVQppZV0sMe0xDGmQXkwAzY3PLWt1A/rysxEs1h+GlR5uuOhA16pllfxWZy905wxJ6xphDkmyX2w77VDFRhMc2VZXJl0UFDZKaAeZjc8nHd7BkPLRP2G2wSOOeMwBuhLcd/4GOVdyjBGdGraYMoZeYrQ9iOj6l+cEC9GFzUS4jUIL0txFL0muZzSvh/ACSGW72pnM2CCXa2MxRFEnrMEd5RTVYoCnlYgjO+vPqG7BJJzLS79qP9VG8bUqa/H/fOv/LUUoWcjWt"
}
}
]
}
],
"generationConfig": {
"width": 1000,
"height": 800,
"quality": "high",
"enableMultiImageGeneration": false
},
"responseModalities": ["image/jpeg"]
}'
示例2:Python代码(带图片解码保存)
import requests
import base64
import json
# 1. 配置基础信息
6AI_API_KEY = "sk-xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx" # 替换为你的6AI API Key
BASE_URL = "https://api.6ai.chat"
ENDPOINT = "/v1beta/models/gemini-2.5-flash-image-preview:generateContent"
FULL_URL = BASE_URL + ENDPOINT
# 2. 图片转Base64(本地图片路径)
def image_to_base64(image_path, mime_type):
with open(image_path, "rb") as f:
return base64.b64encode(f.read()).decode("utf-8")
base64_img = image_to_base64("me.jpg", "image/jpeg") # 替换为你的图片路径
# 3. 构造请求体
payload = {
"contents": [
{
"role": "user",
"parts": [
{
"text": "Hi, This is a picture of me. Can you add a cute llama next to me? The llama should match the photo's warm lighting and not cover my body."
},
{
"inline_data": {
"mime_type": "image/jpeg",
"data": base64_img
}
}
]
}
],
"generationConfig": {
"width": 1000,
"height": 800,
"quality": "high",
"enableMultiImageGeneration": False
},
"responseModalities": ["image/jpeg"]
}
# 4. 发送请求
headers = {
"Authorization": f"Bearer {6AI_API_KEY}",
"Content-Type": "application/json"
}
try:
response = requests.post(FULL_URL, headers=headers, data=json.dumps(payload))
response.raise_for_status() # 抛出HTTP错误(如401、400)
result = response.json()
# 5. 解析响应并保存图片
# 提取Base64图片数据(响应结构参考Gemini原生格式)
generated_img_base64 = result["contents"][0]["parts"][0]["inline_data"]["data"]
# 解码并保存
with open("me_with_llama.jpg", "wb") as f:
f.write(base64.b64decode(generated_img_base64))
print("图片生成成功!已保存为 me_with_llama.jpg")
except requests.exceptions.HTTPError as e:
print(f"请求失败(HTTP错误):{e.response.status_code} - {e.response.text}")
except Exception as e:
print(f"其他错误:{str(e)}")
步骤4:常见错误排查
错误码 | 可能原因 | 解决方案 |
---|---|---|
401 | 6AI API Key无效或未携带 | 检查Key是否正确,确保Header中包含Authorization |
400 | 请求体格式错误(如JSON语法错、参数缺失) | 验证JSON格式,确保contents、parts等参数完整 |
413 | 请求体过大(如Base64图片超过限制) | 压缩图片至5MB以内,重新编码 |
500 | 6AI网关或Gemini服务临时故障 | 稍后重试,或联系6AI客服(461896658@qq.com) |
四、实际案例:
1.云彩艺术
提示词:
生成一张照片:捕捉了白天的场景,天空中散落的云彩组成了 [主体/物体] 的形状,位于 [地点] 的上方。
2.3D Q版中式婚礼图
提示词:
将照片里的两个人转换成Q版 3D人物,中式古装婚礼,大红颜色,背景“囍”字剪纸风格图案。 服饰要求:写实,男士身着长袍马褂,主体为红色,上面以金色绣龙纹图案,彰显尊贵大气 ,胸前系着大红花,寓意喜庆吉祥。女士所穿是秀禾服,同样以红色为基调,饰有精美的金色花纹与凤凰刺绣,展现出典雅华丽之感 ,头上搭配花朵发饰,增添柔美温婉气质。二者皆为中式婚礼中经典着装,蕴含着对新人婚姻美满的祝福。 头饰要求: 男士:中式状元帽,主体红色,饰有金色纹样,帽顶有精致金饰,尽显传统儒雅庄重。 女士:凤冠造型,以红色花朵为中心,搭配金色立体装饰与垂坠流苏,华丽富贵,古典韵味十足。
3.
提示词:
超写实的 3D 渲染画面,重现了2008年《命令与征服:红色警戒3》中娜塔莎的角色设计,完全依照原版建模。场景设定在一个昏暗杂乱的2008年代卧室里,角色正坐在地毯上,面对一台正在播放《命令与征服:红色警戒3》的老式电视和游戏机手柄。
整个房间充满了2008年代的怀旧氛围:零食包装袋、汽水罐、海报以及纠缠在一起的电线。娜塔莎·沃尔科娃在画面中被抓拍到转头的一瞬,回眸看向镜头,她那标志性的空灵美丽面容上带着一抹纯真的微笑。她的上半身微微扭转,动态自然,仿佛刚刚被闪光灯惊到而做出的反应。
闪光灯轻微地过曝了她的脸和衣服,使她的轮廓在昏暗的房间中更加突出。整张照片显得原始而自然,强烈的明暗对比在她身后投下深邃的阴影,画面充满触感,带有一种真实的2008年胶片快照的模拟质感。
对接文档:https://six-ai.apifox.cn/342195959e0