sparkStream mapWithState

793 篇文章 ¥99.90 ¥299.90
本文介绍了如何利用Spark Streaming的mapWithState功能来实现数据的累积求和,详细展示了代码实现过程及运行效果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目的

保存所有数字求和的状态,输出累积求和的值

代码

package com.yy.udf

import org.apache.spark.SparkConf
import org.apache.spark.streaming.dstream.MapWithStateDStream
import org.apache.spark.streaming.{Seconds, State, StateSpec, StreamingContext}

object MapWithStateLearn {
    def main(args: Array[String]): Unit = {
        val conf = new SparkConf().setMaster("local[2]").setAppName("NetworkWordCount")
        val ssc = new StreamingContext(conf, Seconds(5))
        val stream = ssc.socketTextStream("127.0.0.1",9999) //nc -lk发送数字
        ssc.checkpoint("C:\\yy\\coding_project\\yy\\data")
        ssc.sparkContext.setLogLevel("ERROR")

        val stateSpec = StateSpec.function(stateFunc _)

        // mapWithState 统计你输入数字的和
        val value: MapWithStateDStream[String, Long
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Thomas2143

您的打赏是我的动力!!!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值