线性代数
线性相关
在向量空间V的一组向量A:α1,α2,……,αm,如果存在不全为零的数 k1, k2, ···,km , 使
k1α1 + k2α2 + …… kmαm = 0
则称向量组A是线性相关的,否则数 k1, k2, ···,km全为0时,称它是线性无关。
线性组合
定义一个包含k个实数变量的集合x1,x2,……,xk,且假设已知一个k个实数权重集合w1,w2,……,wk。我们定义s = w1x1,w2x2,……,wkxk。s变量是对变量x的加权线性”混合”。因此,将s定义为变量的线性组合。
例:为了分析Ax=b有多少个解,可以将A的列向量看作是从原点出发的不同方向,确定有多少种方法可以到达向量b,向量***x***中的每个元素表示应该沿着这些方向走多远,既xi表示需要沿第i个向量的方向走多远。