matlab中filter帮助文档中“对矩阵行进行滤波”的解释

博客介绍了使用Matlab进行矩阵操作。先创建向量,接着定义有理传递函数的分子和分母系数,然后沿着向量行进行一维数字滤波,最后对滤波结果进行解释,并依据公式y(n)=x(n)+0.2y(1)对结果进行验证。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1、创建向量

% 创建一个由随机输入数据组成的 2×15 矩阵。
rng("default")  %固定随机数种子
x = randi(5,2,6)

结果

 x =

     5     1     4     2     5     1
     5     5     1     3     5     5

2、定义有理传递函数的分子和分母系数。

b = 1;
a = [1 -0.2];

3、沿着 x 的行进行一维数字滤波(1就是竖着滤波,2就是横着滤波)

y = filter(b,a,x,[],2)

结果

y =

    5.0000    2.0000    4.4000    2.8800    5.5760    2.1152
    5.0000    6.0000    2.2000    3.4400    5.6880    6.1376

4、结果解释

 帮助手册上说

  对于本例来说

a*y=b*x

→[1 -0.2]y(n)=x(n)

→y(n)-0.2y(n-1)=x(n)

→y(n)=x(n)+0.2y(n-1)

验证

y(1)=x(1)+0.2y(0)=5+0.2*0=5

y(2)=x(2)+0.2y(1)=1+0.2*5=2

y(3)=x(3)+0.2y(2)=4+0.2*2=4.4

y(4)=x(4)+0.2y(3)=2+0.2*4.4=2.88

### MATLAB 中实现矩阵卡尔曼滤波 在处理多维数据时,卡尔曼滤波可以应用于矩阵形式的状态向量和观测向量。下面是一个适用于矩阵输入的简化版卡尔曼滤波器的MATLAB代码示例[^1]。 ```matlab function [x, P] = kalman_filter(y, A, H, R, Q, x0, P0) % y: 观测值 (m×n 矩阵), m 是时间步数, n 是测量维度 % A: 状态转移模型 (d×d 矩阵),其中 d 是状态变量的数量 % H: 测量函数 (n×d 矩阵) % R: 测量噪声协方差 (n×n 矩阵) % Q: 过程噪声协方差 (d×d 矩阵) % x0: 初始状态估计 (d×1 向量) % P0: 初始误差协方差 (d×d 矩阵) [m,n] = size(y); [d,d] = size(A); if nargin<7, error('Not enough input arguments.'); end % 初始化 x = zeros(d,m); % 存储每次更新后的状态预测 P = zeros(d,d,m); % 存储每次更新后的误差协方差 x(:,1) = x0; P(:,:,1) = P0; for k=2:m % 预测阶段 x_pred = A * x(:,k-1); P_pred = A * P(:,:,k-1) * A' + Q; % 更新阶段 K = P_pred * H' / (H*P_pred*H'+R); % 计算卡尔曼增益 % 应用校正项到预测上 residual = y(k,:)’ - H*x_pred; % 残差计算 x(:,k) = x_pred + K*residual(:); % 更新误差协方差 I_d = eye(size(K)); P(:,:,k) = (I_d-K*H)*P_pred*(I_d-K*H)' + K*R*K'; end ``` 此段程序定义了一个名为 `kalman_filter` 的函数来执标准的一维或多维卡尔曼滤波过程。该函数接收一系列参数作为输入并返回经过滤波后得到的最佳状态估计序列以及对应的不确定度表示——即误差协方差矩阵的变化情况[^2]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值