【局部规划模块路径控制算法】应激式BUG局部避障算法

本文介绍了应激式BUG算法在机器人避障中的应用,包括BUG1和BUG2算法。BUG1沿障碍物边界绕行,直至找到返回直线的机会,而BUG2采取更贪心的策略,寻找首个能直行的离开点。两种算法各有优缺点,适用于不同的环境和任务需求。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

机器人局部轨迹规划相关教程及博客请关注专栏:
https://blog.csdn.net/qq_35635374/article/details/138174730

移动机器人规划控制合集(这个比较全面):
https://blog.csdn.net/qq_35635374/article/details/142830798
在这里插入图片描述

本文先对应激式BUG局部避障算法做个简单的介绍,具体内容后续再更,其他模块可以参考去我其他文章


提示:以下是本篇文章正文内容

(1)应激式BUG算法原理

BUG算法是一种完全应激的机器人避障算法。其算法原理类似昆虫爬行的运动决策策略。在未遇到障碍物时,沿直线向目标运动;在遇到障碍物后,沿着障碍物边界绕行,【防盗标记–盒子君hzj】并利用一定的判断准则离开障碍物继续直行.

BUG算法是一种完

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

RoboticsTechLab

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值