题意:
给定数组A1...,AnA_1...,A_nA1...,An,对于所有1≤i≤k1 \le i \le k1≤i≤k,求Si=∑jAjiS_i = \sum_{j}A_j^iSi=∑jAji。
题解:
这道题要用到一个叫牛顿恒等式的玩意儿。
对于nnn次多项式f=∑i=0naixif=\sum_{i=0}^na_ix^if=∑i=0naixi(注意是首一多项式),设其几个根分别为x1,x2,...,xnx_1,x_2,...,x_nx1,x2,...,xn,设bi=an−ib_i =a_{n-i}bi=an−i,那么对于任意kkk,有:
∑j=1nSibn−i+kbn=0\sum_{j=1}^n S_i b_{n-i}+kb_n = 0j=1∑nSi<