原文 链接
一、贝叶斯定理与朴素贝叶斯
首先介绍一下贝叶斯定理,贝叶斯定理是关于随机事件A和B的条件概率的一则定理。
P ( A ∣ B ) = P ( B ∣ A ) P ( A ) P ( B ) P(A|B)=\frac{P(B|A)P(A)}{P(B)} P(A∣B)=P(B)P(B∣A)P(A)
其中P(A|B)是在B发生的情况下A发生的可能性。
在贝叶斯定理中,有以下名词概念需要注意:
-
P(A|B)是在B条件下(B事件发生了)A发生的条件概率,又被称为A的后验概率 (Posterior probability)。
-
P(B|A)是在A条件下(A事件发生了)B发生的条件概率,又被称为B的后验概率 (Posterior probability)。
-
P(A)是A的先验概率 (Prior probability)。
-
P(B)是B的先验概率(Prior probability)。
-
P(B|A)/P(B)称为可能性函数 (Likelyhood),这是一个调整因子,使得预估概率更接近真实概率。
朴素贝叶斯法 (Naive Bayes) 是基于贝叶斯定理与特征条件独立假设的分类方法。朴素贝叶斯对条件个概率分布做了条件独立性的假设。如下列公式,有n个特征:
P ( X ∣ Y = c k ) = P ( x 1 , x 2 , x 3 , . . . , x n ∣ Y = c k ) = ∏ i = 1 n P ( x i ∣ Y = c k ) P(X|Y=c_k)={P(x_1,x_2,x_3,...,x_n|Y=c_k)}=\prod_{i=1}^nP(x_i|Y=c_k) P(X∣Y=ck)=P(x1,x2,x3,...,xn∣Y=ck)=i=1∏nP(xi∣Y=ck)
下面举个例子更好的理解朴素贝叶斯:
某个医院早上来了六个门诊的病人,他们的情况如下表所示:
症状 | 职业 | 疾病 |
---|---|---|
打喷嚏 | 护士 | 感冒 |
打喷嚏 | 农夫 | 过敏 |
头痛 | 建筑工人 | 脑震荡 |
头痛 | 建筑工人 | 感冒 |
打喷嚏 | 教师 | 感冒 |
头痛 | 教师 | 脑震荡 |
现在又来了第七个病人,是一个打喷嚏的建筑工人。请问他患上感冒的概率有多大?
根据贝叶斯定理:
P ( A ∣ B ) = P ( B ∣ A ) P ( A ) P ( B ) P(A|B)=\frac{P(B|A)P(A)}{P(B)} P(A∣B)=P(B)P(B∣A)P(A)
可得
P ( 感 冒 ∣ 打 喷 嚏 × 建 筑 工 人 ) = P ( 打 喷 嚏 × 建 筑 工 人 ∣ 感 冒 ) P ( 感 冒 ) P ( 打 喷 嚏 × 建 筑 工 人 ) P(感冒|打喷嚏\times建筑工人)=\frac{P(打喷嚏\times建筑工人|感冒)P(感冒)}{P(打喷嚏\times建筑工人)} P(感冒∣打喷嚏×建筑工人)=P(打喷嚏×建筑工人)P(打喷嚏×建筑工人∣感冒)P(感冒)
由朴素贝叶斯条件独立性的假设可知,"打喷嚏"和"建筑工人"这两个特征是独立的,因此,上面的等式就变成了:
P ( 感 冒 ∣ 打 喷 嚏 a n d 建 筑 工 人 ) = P ( 打 喷 嚏 ∣ 感 冒 ) P ( 建 筑 工 人 ∣ 感 冒 ) P ( 感 冒 ) P ( 打 喷 嚏 ) P ( 建 筑 工 人 ) P(感冒|打喷嚏 and 建筑工人)=\frac{P(打喷嚏|感冒)P(建筑工人|感冒)P(感冒)}{P(打喷嚏)P(建筑工人)} P(感冒∣打喷嚏and建筑工人)=