机器学习之极大似然估计与贝叶斯估计

原文 链接

一、贝叶斯定理与朴素贝叶斯

        首先介绍一下贝叶斯定理,贝叶斯定理是关于随机事件A和B的条件概率的一则定理。
P ( A ∣ B ) = P ( B ∣ A ) P ( A ) P ( B ) P(A|B)=\frac{P(B|A)P(A)}{P(B)} P(AB)=P(B)P(BA)P(A)

        其中P(A|B)是在B发生的情况下A发生的可能性。

        在贝叶斯定理中,有以下名词概念需要注意:

  • P(A|B)是在B条件下(B事件发生了)A发生的条件概率,又被称为A的后验概率 (Posterior probability)。

  • P(B|A)是在A条件下(A事件发生了)B发生的条件概率,又被称为B的后验概率 (Posterior probability)。

  • P(A)是A的先验概率 (Prior probability)。

  • P(B)是B的先验概率(Prior probability)。

  • P(B|A)/P(B)称为可能性函数 (Likelyhood),这是一个调整因子,使得预估概率更接近真实概率。

        朴素贝叶斯法 (Naive Bayes) 是基于贝叶斯定理与特征条件独立假设的分类方法。朴素贝叶斯对条件个概率分布做了条件独立性的假设。如下列公式,有n个特征:
P ( X ∣ Y = c k ) = P ( x 1 , x 2 , x 3 , . . . , x n ∣ Y = c k ) = ∏ i = 1 n P ( x i ∣ Y = c k ) P(X|Y=c_k)={P(x_1,x_2,x_3,...,x_n|Y=c_k)}=\prod_{i=1}^nP(x_i|Y=c_k) P(XY=ck)=P(x1,x2,x3,...,xnY=ck)=i=1nP(xiY=ck)
下面举个例子更好的理解朴素贝叶斯:

某个医院早上来了六个门诊的病人,他们的情况如下表所示:

症状 职业 疾病
打喷嚏 护士 感冒
打喷嚏 农夫 过敏
头痛 建筑工人 脑震荡
头痛 建筑工人 感冒
打喷嚏 教师 感冒
头痛 教师 脑震荡

        现在又来了第七个病人,是一个打喷嚏的建筑工人。请问他患上感冒的概率有多大?

根据贝叶斯定理:

P ( A ∣ B ) = P ( B ∣ A ) P ( A ) P ( B ) P(A|B)=\frac{P(B|A)P(A)}{P(B)} P(AB)=P(B)P(BA)P(A)

可得

P ( 感 冒 ∣ 打 喷 嚏 × 建 筑 工 人 ) = P ( 打 喷 嚏 × 建 筑 工 人 ∣ 感 冒 ) P ( 感 冒 ) P ( 打 喷 嚏 × 建 筑 工 人 ) P(感冒|打喷嚏\times建筑工人)=\frac{P(打喷嚏\times建筑工人|感冒)P(感冒)}{P(打喷嚏\times建筑工人)} P(×)=P(×)P(×)P()

        由朴素贝叶斯条件独立性的假设可知,"打喷嚏"和"建筑工人"这两个特征是独立的,因此,上面的等式就变成了:

P ( 感 冒 ∣ 打 喷 嚏 a n d 建 筑 工 人 ) = P ( 打 喷 嚏 ∣ 感 冒 ) P ( 建 筑 工 人 ∣ 感 冒 ) P ( 感 冒 ) P ( 打 喷 嚏 ) P ( 建 筑 工 人 ) P(感冒|打喷嚏 and 建筑工人)=\frac{P(打喷嚏|感冒)P(建筑工人|感冒)P(感冒)}{P(打喷嚏)P(建筑工人)} P(and)=

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值