pytorch中transpose的用法

这篇博客探讨了在深度学习中,特别是在PyTorch的Tensor类中,.transpose()方法的使用。作者通过实例代码展示了.transpose(1, 2)和.transpose(2, 1)虽然参数不同,但实际效果相同,都是交换张量的两个维度。这有助于理解在处理多维数组时如何灵活运用transpose方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在网上搜transpose的用法,出来的大多是numpy类中的用法,实际上跟torch中的tensor类的transpose方法实现方式是有区别的,

因此在看深度学习网络的代码时,碰到.transpose(1, 2)这种样式的代码时就不知所措了。

为此,小弟亲自一试。代码奉上:

import torch
a=torch.Tensor([[[1,2,3],[2,3,4]],[[3,4,5],[4,5,6]]])
b=a.transpose(1,2)  
c=a.transpose(2,1)
print(a.shape)
print(b.shape)
print(c.shape)

print(a)
print(b)
print(c)
输出:
torch.Size([2, 2, 3])
torch.Size([2, 3, 2])
torch.Size([2, 3, 2])
tensor([[[1., 2., 3.],
         [2., 3., 4.]],

        [[3., 4., 5.],
         [4., 5., 6.]]])
tensor([[[1., 2.],
         [2., 3.],
         [3., 4.]],

        [[3., 4.],
         [4., 5.],
         [5., 6.]]])
tensor([[[1., 2.],
         [2., 3.],
         [3., 4.]],

        [[3., 4.],
         [4., 5.],
         [5., 6.]]])

------------------------------------

可以看到,.transpose(1, 2)与.transpose(2,1)在实现结果上是没有区别的,因此小伙伴们再碰到类似情况,可以放心的认为就是两个维度的互换啦!

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值