【CS224n】(lecture9)Self-Attention and Transformers

学习总结

内容简介:

  1. 从循环(RNN)到基于注意力的 NLP 模型
  2. 介绍 Transformer 模型
  3. Transformer 的好结果
  4. Transformer 的缺点和变体

一、从 RNN 到基于注意力的 NLP 模型

1.1 基于注意力的RNN模型

2016年时NLP领域常用双向LSTM对句子进行编码(如翻译下面的句子),把输出定义为一个序列。然后用LSTM解码。最后使用注意力以便灵活地访问编码的隐藏状态(即memory)。
在这里插入图片描述

基于注意力机制的seq2seq,RNN模型

以上就是2014年~2017年的RNN模型,2021年的今天,我们可以用不同的模型。

1.2 RNN循环模型的问题

(1)线性交互距离

循环模型的缺点:线性交互距离。
RNN是“从左到右”展开的,对线性局部性进行编码,这也启发我们:邻近的单词会影响彼此的意思。如句子

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

山顶夕景

小哥哥给我买个零食可好

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值