【LLM模型篇】LLaMA2 | Vicuna | EcomGPT等

一、LLM模型

chatglm2模型

ChatGLM2-6B 训练参数解释
ChatGLM-6B 的部署与微调以及过程中涉及知识总结(7.26更新)
ChatGLM P-Tuning v2 避坑指南

小样本(100条)微调,建议 num_train_epochs(最大迭代轮数) =20 才能稳定拟合任务要求
ps:百度文心千帆平台微调建议,100条数据时, Epoch为15,1000条数据时, Epoch为10,10000条数据时, Epoch为2。

chatglm130b模型

不同于 BERT、GPT-3 以及 T5 的架构,是一个包含多目标函数的自回归预训练模型。该模型有一些独特的优势:

双语:同时支持中文和英文。

高精度(英文):在公开的英文自然语言榜单 LAMBADA、MMLU 和 Big-bench-lite 上优于 GPT-3 175B(API: davinci,基座模型)、OPT-175B 和 BLOOM

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

山顶夕景

小哥哥给我买个零食可好

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值