bzoj1040 [ZJOI2008]骑士

博客介绍了如何解决ZJOI2008竞赛中关于基环树的最大点独立集问题。通过断边策略,分别以环上两点u和v为根进行树形动态规划,计算取点和不取点情况下的最大权值,并选取较大值加入答案。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题意:给出基环树林,求最大点独立集。
第一次打基环树。。感觉姿势奇奇怪怪。。%一发po姐的题解,感觉po姐题解很简洁易懂。
对于每棵基环树,我们找到环上的一条边,设边上的两端点分别为u和v,f[i]为以i为根的子树在取i点的情况下的最大权值,g[i]为不取,于是我们有以下做法:
1.断掉这条边
2.u不取,v任意,我们以u为根跑一遍树形DP,取g[u]
3.v不取,u任意,我们以v为根跑一遍树形DP,取g[v]
4.取上述两个值中的最大值,记入ans

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#define fo(i,a,b) for(int i=a;i<=b;i++)
#define fd(i,a,b) for(int i=a;i>=b;i--)
using namespace std;
typedef long long ll;
const int N=1e6+5;
int n,m;
int head[N],go[N<<1],next[N<<1];
ll f[N],g[N],ans;
int a[N],vis[N],U,V,E,tot=1;
inline void add(int x,int y)
{
    go[++tot]=y;
    next[tot]=head[x];
    head[x]=tot;
}
inline void dfs(int x,int fa)
{
    vis[x]=1;
    int i=head[x];
    for (;i;i=next[i])
    {
        if ((i^1)==fa)
        {
            continue;
        }
        int v=go[i];
        if (vis[v])
        {
            U=x;
            V=v;
            E=i;
            continue;
        }
        dfs(v,i);
    }
}
inline void dp(int x,int from,int ban)
{
    int i=head[x];
    f[x]=a[x];
    g[x]=0;
    for (;i;i=next[i])
    {
        if ((i^1)==from||i==ban||(i^1)==ban)
        {
            continue;
        }
        int v=go[i];
        dp(v,i,ban);
        f[x]+=g[v];
        g[x]+=max(f[v],g[v]);
    }
}
int main()
{
    scanf("%d",&n);
    fo(i,1,n)
    {
        int x;
        scanf("%d%d",&a[i],&x);
        add(i,x);
        add(x,i);
    }
    fo(i,1,n)
    if (!vis[i])
    {
        dfs(i,0);
        dp(U,0,E);
        ll ans1=g[U];
        dp(V,0,E);
        ans1=max(ans1,g[V]);
        ans+=ans1;
    }
    printf("%lld\n",ans);
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值