题意:给出基环树林,求最大点独立集。
第一次打基环树。。感觉姿势奇奇怪怪。。%一发po姐的题解,感觉po姐题解很简洁易懂。
对于每棵基环树,我们找到环上的一条边,设边上的两端点分别为u和v,f[i]为以i为根的子树在取i点的情况下的最大权值,g[i]为不取,于是我们有以下做法:
1.断掉这条边
2.u不取,v任意,我们以u为根跑一遍树形DP,取g[u]
3.v不取,u任意,我们以v为根跑一遍树形DP,取g[v]
4.取上述两个值中的最大值,记入ans
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#define fo(i,a,b) for(int i=a;i<=b;i++)
#define fd(i,a,b) for(int i=a;i>=b;i--)
using namespace std;
typedef long long ll;
const int N=1e6+5;
int n,m;
int head[N],go[N<<1],next[N<<1];
ll f[N],g[N],ans;
int a[N],vis[N],U,V,E,tot=1;
inline void add(int x,int y)
{
go[++tot]=y;
next[tot]=head[x];
head[x]=tot;
}
inline void dfs(int x,int fa)
{
vis[x]=1;
int i=head[x];
for (;i;i=next[i])
{
if ((i^1)==fa)
{
continue;
}
int v=go[i];
if (vis[v])
{
U=x;
V=v;
E=i;
continue;
}
dfs(v,i);
}
}
inline void dp(int x,int from,int ban)
{
int i=head[x];
f[x]=a[x];
g[x]=0;
for (;i;i=next[i])
{
if ((i^1)==from||i==ban||(i^1)==ban)
{
continue;
}
int v=go[i];
dp(v,i,ban);
f[x]+=g[v];
g[x]+=max(f[v],g[v]);
}
}
int main()
{
scanf("%d",&n);
fo(i,1,n)
{
int x;
scanf("%d%d",&a[i],&x);
add(i,x);
add(x,i);
}
fo(i,1,n)
if (!vis[i])
{
dfs(i,0);
dp(U,0,E);
ll ans1=g[U];
dp(V,0,E);
ans1=max(ans1,g[V]);
ans+=ans1;
}
printf("%lld\n",ans);
return 0;
}