JZOJ5385. 【NOIP2017提高A组模拟9.23】Carry 树上倍增

这道题目要求在树形结构中找到从点qx到qy的最大路径权值,并允许减少一条边的权值L以降低总花费。比赛时被误认为是简单的树剖问题,但实际上使用树剖解决方案会变得复杂。最佳策略是采用倍增算法,类似次小生成树,维护每个节点到其2^i祖先路径上的第二大权值。在寻找最近公共祖先的过程中处理L的影响,并在最后汇总未修改边的贡献。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题意:给你一棵树,q对点,要求每次从qx走到qy的花费为最大路径权值,可以把一条边减小L,问最少花费。

= =简单题,比赛的时候只是扫了一眼,觉得应该是树剖裸题,然后就放了= =
事实上也可以用树剖来做,但是非常复杂,难以维护。
倍增就好了,和那个次小生成树一样,维护一个每个点往上2^i的路径的最大次大权值。然后那个L的那个东西,我每次在求一对点的LCA过程中,直接用已经求出的最大次大维护,然后最后把最大边拉出来记录一下,最后把所有边扫一遍+不改边的贡献就ok。

#include<cstdio>
#include<algorithm>
#include<cstring>
#define fo(i,a,b) for(int i=a;i<=b;i++)
#define fd(i,a,b) for(int i=a;i>=b;i--)
using namespace std;
const int N=1e5+5;
const int inf=2e9;
typedef long long ll;
int n,m,q,l;
int fa[N][22],head[N],next[N],go[N],val[N];
int dep[N];
ll ans,sum[N];
int mx[N][22],mx2[N][22];
int id[N][22],tot;
inline void add(int x,int y,int z)
{
    go[++tot]=y;
    next[tot]=head[x];
    val[tot]=z;
    head[x]=tot;
} 
inline void dfs(int x,int last,int y)
{
    fa[x][0]=last,mx[x][0]=y;
    id[x][0]=x;
    dep[x]=dep[last]+1;
    fo(i,1,19)
    {
        fa[x][i]=fa[fa[x][i-1]][i-1];
        if (mx[x][i-1]>mx[fa[x][i-1]][i-1])
        {
            mx[x][i]=mx[x][i-1];
            id[x][i]=id[x][i-1];
            mx2[x][i]=max(mx2[x][i-1],mx[fa[x][i-1]][i-1]);
        }
        else
        {
            int fat=fa[x][i-1];
            mx[x][i]=mx[fat][i-1];
            id[x][i]=id[fat][i-1];
            mx2[x][i]=max(mx2[fat][i-1],mx[x][i-1]);
        }
    }
    for(int i=head[x];i;i=next[i])
    {
        int v=go[i];
        if (v!=last)
        dfs(v,x,val[i]);
    }
}
inline void update(int x,int i,int& Mx,int& Mx2,int& Id)
{
    if (mx[x][i]>Mx)
    {
        Mx2=max(Mx2,max(Mx,mx2[x][i]));
        Mx=mx[x][i];
        Id=id[x][i];
    }
    else Mx2=max(Mx2,mx[x][i]);
}
inline void mark(int mx,int mx2,int id)
{
    ans+=mx;
    if (mx2==mx)return;
    sum[id]+=(mx-mx2<=l)?mx2-mx:-l;
}
inline void solve(int x,int y)
{
    if (x==y)return ;
    int mx=-inf,mx2=-inf,id=0;
    if (dep[x]<dep[y])swap(x,y);
    if (dep[x]>dep[y])
    fd(i,19,0)if (dep[fa[x][i]]>=dep[y])
    {
        update(x,i,mx,mx2,id);
        x=fa[x][i];
    }
    if (x==y)
    {
        mark(mx,mx2,id);
        return;
    }
    fd(i,19,0)
    {
        if (fa[x][i]!=fa[y][i])
        {
            update(x,i,mx,mx2,id);
            update(y,i,mx,mx2,id);
            x=fa[x][i],y=fa[y][i];
        }
    }
    update(x,0,mx,mx2,id);
    update(y,0,mx,mx2,id);
    mark(mx,mx2,id);
}
int main()
{
    //freopen("carry.in","r",stdin);
    //freopen("carry.out","w",stdout);
    scanf("%d%d%d",&n,&q,&l);
    fo(i,1,n-1)
    {
        int x,y,z;
        scanf("%d%d%d",&x,&y,&z);
        add(x,y,z);add(y,x,z); 
    }
    dfs(1,0,0);
    fo(i,1,q)
    {
        int x,y;
        scanf("%d%d",&x,&y);
        solve(x,y);
    }
    ll mn=1e15;
    fo(i,1,n)mn=min(mn,sum[i]);
    printf("%lld\n",ans+mn);
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值