一、假设检验
假设检验与之前提到的参数估计一样,是统计推断的两个组成部分,只是角度不同。参数估计是在总体参数μ未知的前提下用样本统计量进行估计的方法;而假设检验是先对总体参数μ提出一个假设,然后利用样本信息去检验这个假设是否成立。
同样的这里先提出几个概念:
原假设: 最先提出的假设参数,我们需要检验的对象,一般是一个精确值(a=1)。
备择假设: 与原假设互斥的参数,当我们拒绝原假设时的取值,一般是一个模糊的范围值(a≠1)。
备注:备择假设可以是单侧假设或双侧假设
单侧假设:
使用单侧备择假设(又称为定向假设)可以确定总体参数是否不同于特定方向上的假设值。您可以将方向指定为大于假设值或小于假设值。单侧检验的功效大于双侧检验,但是单侧检验无法检测总体参数在相反方向上是否不同
双侧假设:
使用双侧备择假设(又称为非定向假设)可以确定总体参数是大于还是小于假设值。双侧检验可以检测到总体参数在任一方向的不同,但其功效小于单侧检验
两类错误:
两类错误我们之前在分析体温那期曾经说过,这里再回顾一下
一类错误(α错误、弃真错误):原假设实际上是正确的,但是我们做出决定是拒绝原假设
二类错误(β错误、取伪错误):原假设实际上是错误的,但是我们却做出了接受原假设的决定
这两个错误是此消彼长的,当我们减少一类错误的同时也增加了二类错误的发生可能性,要根据两类错误的影响和危害程度来调整错误的发生几率。但是一般我们习惯先控制一类错误的原则,因为一般情况下我们的原假设都比较明确而备择假设比较模糊,那么就有了α发生概率,即显著性水平。
显著性水平: 即犯第一类错误的最大概率α,也是我们最大能承担的失误水平大小。
P值:</