为什么会有时间复杂度分析?
数据结构和算法解决的就是‘快’和‘省’的问题,即如何让代码跑的更快,更省存储空间。
大 O 复杂度表示法
算法的执行效率,粗略地讲,就是算法代码执行的时间
- 只关注循环执行次数最多的一段代码
大 O 这种复杂度表示方法只是表示一种变化趋势,我们通常会忽略掉公式中的常量、低阶、系数,只需要记录一个最大阶的量级就可以了。所以在分析一个算法、一段代码的时间复杂度的时候,也只关注循环执行次数最多的那一段代码就可以了
int cal(int n) {
int sum = 0;
int i = 1;
for (; i <= n; ++i) {
sum = sum + i;
}
return sum;
}
时间复杂度为O(n), n表示的是执行次数, 代码的执行时间为T(n)
- 加法法则:总复杂度等于量级最大的那段代码的复杂度
int cal(int n) {
int sum_1 = 0;
int p = 1;
for (; p < 100; ++p) {
sum_1 = sum_1 + p;
}
int sum_2 = 0;
int q = 1;
for (; q < n; ++q) {
sum_2 = sum_2 + q;
}
int sum_3 = 0;
int i = 1;
int j = 1;
for (; i <= n; ++i) {
j = 1;
for (; j <= n; ++j) {
sum_3 = sum_3 + i * j;
}
}
return sum_1 + sum_2 + sum_3;
}
第一段:循环100次,因为循环次数100是常量