时间复杂度分析(上)

本文介绍了时间复杂度分析的重要性,讲解了大 O 复杂度表示法,阐述了常见的时间复杂度量级如 O(1)、O(logn)、O(nlogn)、O(m+n)、O(m*n)。通过实例解析了加法法则和乘法法则,并探讨了非多项式量级的时间复杂度问题,强调了进行复杂度分析对优化代码性能的意义。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

为什么会有时间复杂度分析?

数据结构和算法解决的就是‘快’和‘省’的问题,即如何让代码跑的更快,更省存储空间。

大 O 复杂度表示法

算法的执行效率,粗略地讲,就是算法代码执行的时间

  • 只关注循环执行次数最多的一段代码
    大 O 这种复杂度表示方法只是表示一种变化趋势,我们通常会忽略掉公式中的常量、低阶、系数,只需要记录一个最大阶的量级就可以了。所以在分析一个算法、一段代码的时间复杂度的时候,也只关注循环执行次数最多的那一段代码就可以了

 int cal(int n) {
   int sum = 0;
   int i = 1;
   for (; i <= n; ++i) {
     sum = sum + i;
   }
   return sum;
 }

时间复杂度为O(n), n表示的是执行次数, 代码的执行时间为T(n)

  • 加法法则:总复杂度等于量级最大的那段代码的复杂度

int cal(int n) {
   int sum_1 = 0;
   int p = 1;
   for (; p < 100; ++p) {
     sum_1 = sum_1 + p;
   }

   int sum_2 = 0;
   int q = 1;
   for (; q < n; ++q) {
     sum_2 = sum_2 + q;
   }
 
   int sum_3 = 0;
   int i = 1;
   int j = 1;
   for (; i <= n; ++i) {
     j = 1; 
     for (; j <= n; ++j) {
       sum_3 = sum_3 +  i * j;
     }
   }
 
   return sum_1 + sum_2 + sum_3;
 }

第一段:循环100次,因为循环次数100是常量

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值