力扣问题
图书整理II
问题
[力扣125] LCR 125. 图书整理 II - 力扣(LeetCode)
问题描述
读者来到图书馆排队借还书,图书管理员使用两个书车来完成整理借还书的任务。书车中的书从下往上叠加存放,图书管理员每次只能拿取书车顶部的书。排队的读者会有两种操作:
push(bookID)
:把借阅的书籍还到图书馆。pop()
:从图书馆中借出书籍。
为了保持图书的顺序,图书管理员每次取出供读者借阅的书籍是 最早 归还到图书馆的书籍。你需要返回 每次读者借出书的值 。
如果没有归还的书可以取出,返回 -1
。
示例 1:
输入:
["BookQueue", "push", "push", "pop"]
[[], [1], [2], []]
输出:[null,null,null,1]
解释:
MyQueue myQueue = new MyQueue();
myQueue.push(1); // queue is: [1]
myQueue.push(2); // queue is: [1, 2] (leftmost is front of the queue)
myQueue.pop(); // return 1, queue is [2]
解决方案
图书管理员每次取出供读者借阅的书籍是 最早 归还到图书馆的书籍, 类似于队列问题,由于队列可借可还,可以考虑循环队列。
参考实现
class CQueue {
private Deque<Integer> q;
public CQueue() {
q = new ArrayDeque<>();
}
public void appendTail(int value) {
q.offer(value);
}
public int deleteHead() {
if(!q.isEmpty()){
return q.poll();
}else{
return -1;
}
}
}
class CQueue {
private int[] nums = new int[5000];
private int head;
private int tail;
public CQueue() {
}
public void appendTail(int value) {
if ((tail + 1) % nums.length == head) { // 满队列
return;
}
nums[tail] = value;
tail = (tail + 1) % nums.length;
}
public int deleteHead() {
if (head == tail)
return -1; // 空队列
int val = nums[head];
head = (head + 1) % nums.length;
return val;
}
}
用栈实现队列
问题
问题描述
请你仅使用两个栈实现先入先出队列。队列应当支持一般队列支持的所有操作(push
、pop
、peek
、empty
):
实现 MyQueue
类:
void push(int x)
将元素 x 推到队列的末尾int pop()
从队列的开头移除并返回元素int peek()
返回队列开头的元素boolean empty()
如果队列为空,返回true
;否则,返回false
说明:
- 你 只能 使用标准的栈操作 —— 也就是只有
push to top
,peek/pop from top
,size
, 和is empty
操作是合法的。 - 你所使用的语言也许不支持栈。你可以使用 list 或者 deque(双端队列)来模拟一个栈,只要是标准的栈操作即可。
示例 1:
输入:
["MyQueue", "push", "push", "peek", "pop", "empty"]
[[], [1], [2], [], [], []]
输出:
[null, null, null, 1, 1, false]
解释:
MyQueue myQueue = new MyQueue();
myQueue.push(1); // queue is: [1]
myQueue.push(2); // queue is: [1, 2] (leftmost is front of the queue)
myQueue.peek(); // return 1
myQueue.pop(); // return 1, queue is [2]
myQueue.empty(); // return false
提示:
1 <= x <= 9
- 最多调用
100
次push
、pop
、peek
和empty
- 假设所有操作都是有效的 (例如,一个空的队列不会调用
pop
或者peek
操作)
进阶:
- 你能否实现每个操作均摊时间复杂度为
O(1)
的队列?换句话说,执行n
个操作的总时间复杂度为O(n)
,即使其中一个操作可能花费较长时间。
解决方案
参考实现
class MyQueue {
private Stack<Integer> s1; //压入
private Stack<Integer> s2; //出
public MyQueue() {
s1 = new Stack<>();
s2 = new Stack<>();
}
public void push(int x) {
s1.push(x);
}
public int pop() {
if(s2.isEmpty()){
while(!s1.isEmpty()){
s2.push(s1.pop());
}
}
return s2.pop();
}
public int peek() {
if(s2.isEmpty()){
while(!s1.isEmpty()){
s2.push(s1.pop());
}
}
return s2.peek();
}
public boolean empty() {
return s1.isEmpty() && s2.isEmpty();
}
}
用队列实现栈
题目
[ 力扣225] 225. 用队列实现栈 - 力扣(LeetCode)
题目描述
请你仅使用两个队列实现一个后入先出(LIFO)的栈,并支持普通栈的全部四种操作(push
、top
、pop
和 empty
)。
实现 MyStack
类:
void push(int x)
将元素 x 压入栈顶。int pop()
移除并返回栈顶元素。int top()
返回栈顶元素。boolean empty()
如果栈是空的,返回true
;否则,返回false
。
注意:
- 你只能使用队列的标准操作 —— 也就是
push to back
、peek/pop from front
、size
和is empty
这些操作。 - 你所使用的语言也许不支持队列。 你可以使用 list (列表)或者 deque(双端队列)来模拟一个队列 , 只要是标准的队列操作即可。
示例:
输入:
["MyStack", "push", "push", "top", "pop", "empty"]
[[], [1], [2], [], [], []]
输出:
[null, null, null, 2, 2, false]
解释:
MyStack myStack = new MyStack();
myStack.push(1);
myStack.push(2);
myStack.top(); // 返回 2
myStack.pop(); // 返回 2
myStack.empty(); // 返回 False
解决方案
参考实现
有效的括号
问题
[力扣20] 20. 有效的括号 - 力扣(LeetCode)
题目描述
给定一个只包括 '('
,')'
,'{'
,'}'
,'['
,']'
的字符串 s
,判断字符串是否有效。
有效字符串需满足:
- 左括号必须用相同类型的右括号闭合。
- 左括号必须以正确的顺序闭合。
- 每个右括号都有一个对应的相同类型的左括号。
示例 1:
输入:s = "()"
输出:true
示例 2:
输入:s = "()[]{}"
输出:true
示例 3:
输入:s = "(]"
输出:false
示例 4:
输入:s = "([])"
输出:true
解决方案(一)
-
遍历字符是( , { , [
-
遍历字符是 ) } ]
解决方案(二)
使用Map存储成对的括号 。
计算器
问题
[力扣面试题16.26] 面试题 16.26. 计算器 - 力扣(LeetCode)
问题描述
给定一个包含正整数、加(+)、减(-)、乘(*)、除(/)的算数表达式(括号除外),计算其结果。
表达式仅包含非负整数,+
, -
,*
,/
四种运算符和空格
。 整数除法仅保留整数部分。
示例 1:
输入: "3+2*2"
输出: 7
示例 2:
输入: " 3/2 "
输出: 1
示例 3:
输入: " 3+5 / 2 "
输出: 5
解决方案
参考实现
class Solution {
public int calculate(String s) {
//定义队列记录数值
Deque<Integer> stackNums = new ArrayDeque<>();
//去掉空格,分解数字和符号
s = s.replaceAll(" ", "");
String[] split = s.split("[+*/-]"); //存储数值
String[] cs = ("+"+s).split("[0-9]+"); //存储符号
if(cs.length == 0) return Integer.valueOf(split[0]); //如果只有一个数字则直接返回
int index = 0; //记录数值数组的索引
for( String opt : cs){
int num = Integer.valueOf(split[index++]);//将数值字符串转换为整数
switch (opt){
case "+": //如果为+号直接存储
stackNums.push(num);
break;
case "-": //如果为-号理解为正数的相反数
stackNums.push(-1*num);
break;
case "*": //乘除法先运算
stackNums.push(stackNums.poll() * num);
break;
case "/":
stackNums.push(stackNums.poll() /num);
}
}
//计算栈中的数据求和(乘除已经计算完成)
int result = 0;
while (!stackNums.isEmpty()) {
result += stackNums.poll();
}
return result;
}
}
棒球比赛
题目
[力扣682] 682. 棒球比赛 - 力扣(LeetCode)
题目描述
你现在是一场采用特殊赛制棒球比赛的记录员。这场比赛由若干回合组成,过去几回合的得分可能会影响以后几回合的得分。
比赛开始时,记录是空白的。你会得到一个记录操作的字符串列表 ops
,其中 ops[i]
是你需要记录的第 i
项操作,ops
遵循下述规则:
- 整数
x
- 表示本回合新获得分数x
"+"
- 表示本回合新获得的得分是前两次得分的总和。题目数据保证记录此操作时前面总是存在两个有效的分数。"D"
- 表示本回合新获得的得分是前一次得分的两倍。题目数据保证记录此操作时前面总是存在一个有效的分数。"C"
- 表示前一次得分无效,将其从记录中移除。题目数据保证记录此操作时前面总是存在一个有效的分数。
请你返回记录中所有得分的总和。
示例 1:
输入:ops = ["5","2","C","D","+"]
输出:30
解释:
"5" - 记录加 5 ,记录现在是 [5]
"2" - 记录加 2 ,记录现在是 [5, 2]
"C" - 使前一次得分的记录无效并将其移除,记录现在是 [5].
"D" - 记录加 2 * 5 = 10 ,记录现在是 [5, 10].
"+" - 记录加 5 + 10 = 15 ,记录现在是 [5, 10, 15].
所有得分的总和 5 + 10 + 15 = 30
示例 2:
输入:ops = ["5","-2","4","C","D","9","+","+"]
输出:27
解释:
"5" - 记录加 5 ,记录现在是 [5]
"-2" - 记录加 -2 ,记录现在是 [5, -2]
"4" - 记录加 4 ,记录现在是 [5, -2, 4]
"C" - 使前一次得分的记录无效并将其移除,记录现在是 [5, -2]
"D" - 记录加 2 * -2 = -4 ,记录现在是 [5, -2, -4]
"9" - 记录加 9 ,记录现在是 [5, -2, -4, 9]
"+" - 记录加 -4 + 9 = 5 ,记录现在是 [5, -2, -4, 9, 5]
"+" - 记录加 9 + 5 = 14 ,记录现在是 [5, -2, -4, 9, 5, 14]
所有得分的总和 5 + -2 + -4 + 9 + 5 + 14 = 27
示例 3:
输入:ops = ["1"]
输出:1
解决方案(一)
使用栈记录 C, D, +
解决方案(二)
构建另一个数组存储数值,index记录数组的位置。
- 如果为D将前一个数nums[index-1]*2
- 如果为C回退2个位置index-=2
- 如果为+号,前两个数相加: nums[index-1]+nums[index-2]
- 如果为数值: nums[index]
- 每扫描一次index++
int[] nums = new int[operations.length];
int index = 0;
for (String str : operations) {
if ("+".equals(str)) {
nums[index] = nums[index - 1] + nums[index - 2];
} else if ("C".equals(str)) {
index -= 2;
} else if ("D".equals(str)) {
nums[index] = nums[index - 1] * 2;
} else {
nums[index] = Integer.parseInt(str);
}
index++;
}
int s = 0;
for (int i = 0; i < index; i++) {
s += nums[i];
}
return s;
最小栈
题目
[力扣155] 155. 最小栈 - 力扣(LeetCode)
题目描述
设计一个支持 push
,pop
,top
操作,并能在常数时间内检索到最小元素的栈。
实现 MinStack
类:
MinStack()
初始化堆栈对象。void push(int val)
将元素val推入堆栈。void pop()
删除堆栈顶部的元素。int top()
获取堆栈顶部的元素。int getMin()
获取堆栈中的最小元素。
示例 1:
输入:
["MinStack","push","push","push","getMin","pop","top","getMin"]
[[],[-2],[0],[-3],[],[],[],[]]
输出:
[null,null,null,null,-3,null,0,-2]
解释:
MinStack minStack = new MinStack();
minStack.push(-2);
minStack.push(0);
minStack.push(-3);
minStack.getMin(); --> 返回 -3.
minStack.pop();
minStack.top(); --> 返回 0.
minStack.getMin(); --> 返回 -2.
解决方案
push操作
pop操作
 {
normal = new Stack<>();
min = new Stack<>();
}
public void push(int val) {
normal.push(val);
if (min.isEmpty() || min.peek() >= val) {
min.push(val);
}
}
public void pop() {
int top = normal.peek();
int mTop = min.peek();
if (top == mTop) {
min.pop();
}
normal.pop();
}
public int top() {
return normal.peek();
}
public int getMin() {
return min.peek();
}
}