目录
1.AlignSeg: Feature-Aligned Segmentation Networks
2.Semantic Flow for Fast and Accurate Scene Parsing
前言
工业产品表面缺陷检测已成为一个很有前途的研究领域。在现有的缺陷检测算法中,大多数基于cnn的方法都能在理想的实验条件下完成缺陷检测任务。
然而,在实际生产环境中,工业产品种类繁多,导致带有缺陷的样品种类繁多。由于环境的相对复杂性,从相机捕捉到的图像呈现出微弱的光线。如下图所示,绿框中均为划痕,在图案复杂的弱光图像中,缺陷特征不明显。此外,由于生产过程极其复杂,导致产品表面存在多尺度缺陷。图像中缺陷的长度和大小可能不一致,从而导致多尺度缺陷的问题。因此,传统方法难以提取缺陷的局部信息,而且这些模糊特征容易使图像的模式与缺陷相混淆。同时,一般的缺陷检测器也无法解决从尺度不一致的图像中区分缺陷的问题。这些问题的存在降低了缺陷检测模型的泛化能力。
知识拓展
多尺度理论及图像特征
多尺度
1.尺度