MATLAB算法实战应用案例精讲-【深度学习】多尺度特征提取

目录

前言

知识拓展

多尺度理论及图像特征

多尺度

 多特征

算法原理

多尺度特征提取模块 Multi-Scale Module

图像金字塔

多尺度的卷积层

FPN(特征金字塔)

SPP

PPM

ASPP

GPM

 PAFEM

FoldConv_ASPP

多尺度目标检测

常见的几种策略

“多尺度”目标检测相关研究最新进展

 应用案例

图像金字塔多尺度特征提取

1. 图像金字塔

2. 实现方法

3. 算法流程

4.代码实现(初始版)

5.代码实现(改进版)

语义分割中多尺度特征的配准问题

1.问题阐述

1.AlignSeg: Feature-Aligned Segmentation Networks

 2.Semantic Flow for Fast and Accurate Scene Parsing

算法拓展

多尺度特征提取和多级别特征融合的显著性目标检测方法

1 方法

2 实验与结果


前言

工业产品表面缺陷检测已成为一个很有前途的研究领域。在现有的缺陷检测算法中,大多数基于cnn的方法都能在理想的实验条件下完成缺陷检测任务。
  然而,在实际生产环境中,工业产品种类繁多,导致带有缺陷的样品种类繁多。由于环境的相对复杂性,从相机捕捉到的图像呈现出微弱的光线。如下图所示,绿框中均为划痕,在图案复杂的弱光图像中,缺陷特征不明显。此外,由于生产过程极其复杂,导致产品表面存在多尺度缺陷。图像中缺陷的长度和大小可能不一致,从而导致多尺度缺陷的问题。因此,传统方法难以提取缺陷的局部信息,而且这些模糊特征容易使图像的模式与缺陷相混淆。同时,一般的缺陷检测器也无法解决从尺度不一致的图像中区分缺陷的问题。这些问题的存在降低了缺陷检测模型的泛化能力。
 

知识拓展

多尺度理论及图像特征

多尺度

1.尺度

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

林聪木

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值