目录 知识储备 基于改进YOLOv5的水下群体目标检测代码实现 一、环境配置 二、数据预处理 1. 数据集准备 2. 数据增强与预处理 三、改进YOLOv5模型 1. 引入可变形卷积(Deformable Convolution) 四、模型训练 1. 训练函数 五、模型评估 1. 评估函数 七、优化方向 前言 相关理论介绍 2.1 卷积神经网络 2.2 可变形卷积 2.3 目标检测算法 2.4 非极大值抑制算法 基于改进YOLOv5和可变形卷积的水下群体目标检测 3.1 数据采集和标注 3.1.1 数据采集 3.1.2 数据标注 3.2基于改进YOLOv5和可变形卷积的水下群体目标检测 3.2.1 可变形卷积模块 3.2.2 自适应阈值模块 3.3 实验结果与分析 3.3.1实验平台和模型训练参数 3.3.3实验设计 3.3.4消融实验 3.3.5 DCM位置分析 3.3.6固定阈值分析 本文篇幅较长分为上下两篇,下篇详见基于改进YOLOv5的水下群体目标检测 研究与实现(续) 知识储备