MATLAB算法实战应用案例精讲-【大模型】LLM算法(最终篇)

本文详细介绍了使用MATLAB进行大模型微调的步骤,涵盖数据准备、预处理、微调策略、Transformer模型训练以及混合精度和分布式训练技术。通过实例讲解了在糖尿病问答任务上微调LLM的过程,强调了数据质量和定制化的重要性,并探讨了如何在有限资源下优化训练效率。此外,还介绍了DeepSpeed的并行训练策略,以及参数有效性学习的LoRA方法,提供了LLM开发的编程、API、Plugin、Workflow和解决方案的开发范式。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

前言

知识储备

1).通讯原语操作:

2).并行计算技术:

算法原理

为什么要微调大模型?

大模型微调

准备和预处理微调LLM的数据集

如何微调LLM大模型?

加载LLM微调自定义数据集

微调训练大模型

Transformer模型训练

混合精度训练

DeepSpeed分布式训练

(1)传统的数据并行

(2)DeepSpeed ZeRO并行训练

参数有效性学习

大模型(LLM)开发范式

Programming (Coding)

API(SDK)

Plugin(Command)

Workflow(Meta)

Application(Solution)

LLMs

自定义训练大型语言模型(LLM)

步骤1:准备数据集

1.1 收集或创建数据集

1.2 预处理和分词化

步骤2:配置训练参数

步骤3:设置训练环境

步骤4:微调模型

步骤5:评估微调后的模型

步骤6:保存和使用微调后的模型


 

前言

大型语言模型(LLM)经过大量文本数据的训练,使它们能够理解人类语言的含义和上下文。 以前,大多数模型都是使用监督方法进行训练的,我们提供输入特征和相应的标签。 与此不同的是,LLM是通过无监督学习进行训练的,他们接受大量没有任何标签和指令的文本数据。 因此,LLM可以有效地学习语言单词之间的含义和关系。 它们可用于各种任务,例如文本生成、问答、从一种语言翻译为另一种语言等等。

知识储备

1).通讯原语操作:

NCCL 英伟达集合通信库,是一个专用于多个 GPU 乃至多个节点间通信的实现。它专为英伟达的计算卡和网络优化,能带来更低的延迟和更高的带宽。

a.Broadcast

Broadcast代表广播行为,执行Broadcast时,数据从主节点0广播至其他各个指定的节点(0~3)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

林聪木

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值