目录 知识储备 基于YOLOv8的交通目标检测 一、环境配置(Python 3.8+) 二、数据集构建与处理(支持多源数据集成) 三、YOLOv8模型训练与优化 四、高性能推理代码(含TensorRT加速) 五、关键配置文件 六、运行说明 前言 国内外研究现状 目标检测研究现状 目标检测数据集研究现状 基于深度学习的通用目标检测方法 2.1 数据集构建 2.2 基于深度学习的目标检测框架 2.2.1 双阶段检测算法分析 2.2.2 YOLO系列单阶段检测算法分析 2.3 多标签分类检测 交通多样化数据集构建 3.1 交通场景的特点 3.2 数据集构建准备 3.2.1 现有数据集特点 3.2.2 样本数据采集流程 3.3 基于LabelImg的标注优化工具 3.3.1 目标预检测功能设计与实现 3.3.2 目标多属性添加功能设计与实现 3.4 多样化数据集构建 3.4.1 数据集划分 3.4.2 数据集构建 3.5 数据增广及融合 3.5.1 针对交通场景的数据增强 3.5.2 基于常规方法的数据增强 3.5.3 数据集融合 本文篇幅较长,分为上中下三篇,文章索引详见 交通目标数据集构建及高性能检测算法研究与应用