MATLAB基础应用精讲-【数模应用】求解定积分(附python、R语言和MATLAB代码实现)

目录

前言

算法原理

定积分的一些基础运算法则

数学模型

牛顿-莱布尼兹公式

换元积分法

 分部积分法

利用奇偶性,周期性 

​编辑 定积分计算的几种方法

方法1:定义法(数列极限法)

方法2:几何法(利用定积分几何意义计算)

方法3:直接使用“微积分基本公式” 

方法4:定积分运算法则+被积函数或者积分区间变形后使用“微积分基本公式”

方法5:利用被积函数奇偶性即积分区间对称性计算

方法6:分步积分法

方法7:几种方法综合

代码实现

python

使用scipy库求解积分

不定积分

R语言

蒙特卡洛计算定积分

MATLAB

 一重定积分

二重积分 

三重定积分

超维长方体区域多重积分 


 

前言


定积分,一般指在一个区间上有定义的一元实函数的黎曼和的极限。它描述的是将函数在区间上作微元后,将函数值累加起来的过程。直观地看,定积分描述的是函数图像在一段区间内围成曲边梯形的正向面积。
定积分具有一系列重要的性质与计算方法,包括牛顿-莱布尼兹公式等。
定积分在数学和物理上有非常广泛的应用,包括求曲线弧长、几何体体积、变力做功等;从定积分出发还可以衍生出定积分中值定理等。

算法原理

定积分的一些基础运算法则

为了能够计算一些复杂一点的积分,我们需要掌握定积分的基础运算法则,放心,非常简单,就是小学加减法而已

第二条法则记住就好

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

林聪木

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值