炮兵阵地
Time Limit: 2000MS | Memory Limit: 65536K | |
Total Submissions: 27477 | Accepted: 10632 |
Description
司令部的将军们打算在N*M的网格地图上部署他们的炮兵部队。一个N*M的地图由N行M列组成,地图的每一格可能是山地(用"H" 表示),也可能是平原(用"P"表示),如下图。在每一格平原地形上最多可以布置一支炮兵部队(山地上不能够部署炮兵部队);一支炮兵部队在地图上的攻击范围如图中黑色区域所示:

如果在地图中的灰色所标识的平原上部署一支炮兵部队,则图中的黑色的网格表示它能够攻击到的区域:沿横向左右各两格,沿纵向上下各两格。图上其它白色网格均攻击不到。从图上可见炮兵的攻击范围不受地形的影响。
现在,将军们规划如何部署炮兵部队,在防止误伤的前提下(保证任何两支炮兵部队之间不能互相攻击,即任何一支炮兵部队都不在其他支炮兵部队的攻击范围内),在整个地图区域内最多能够摆放多少我军的炮兵部队。

如果在地图中的灰色所标识的平原上部署一支炮兵部队,则图中的黑色的网格表示它能够攻击到的区域:沿横向左右各两格,沿纵向上下各两格。图上其它白色网格均攻击不到。从图上可见炮兵的攻击范围不受地形的影响。
现在,将军们规划如何部署炮兵部队,在防止误伤的前提下(保证任何两支炮兵部队之间不能互相攻击,即任何一支炮兵部队都不在其他支炮兵部队的攻击范围内),在整个地图区域内最多能够摆放多少我军的炮兵部队。
Input
第一行包含两个由空格分割开的正整数,分别表示N和M;
接下来的N行,每一行含有连续的M个字符('P'或者'H'),中间没有空格。按顺序表示地图中每一行的数据。N <= 100;M <= 10。
接下来的N行,每一行含有连续的M个字符('P'或者'H'),中间没有空格。按顺序表示地图中每一行的数据。N <= 100;M <= 10。
Output
仅一行,包含一个整数K,表示最多能摆放的炮兵部队的数量。
Sample Input
5 4 PHPP PPHH PPPP PHPP PHHP
Sample Output
6
题解:
原始的矩阵f,1代表可以放置炮兵,对应P,这样每一行都有一个仅由01表示的是否可以放置炮兵的状态,相当于一个数的二进制表示,就用到状态压缩
当前行和前两行都有关系,所以用3维矩阵来保存一个状态下最多的炮兵个数,用dp[i][j][k]表示当前第i行状态j,i-1行状态为k的最大炮兵数,这个最大数由i-2行的状态t确定
转移方程为dp[i][j][k]=max{dp[i-1][k][t]+sum[j]},这样求到最后一行之后,答案就是最后一行所有状态中最大的那个。程序初始化的时候对第一行,第二行进行特殊处理
#include<stdio.h>
#include<string.h>
#define max(a,b) a>b?a:b
int N,M,dp[15][1<<11][1<<11],f[105][15],sum[1<<11],kind[1<<11],s;
void init(){//初始化方阵
int i,j;char c;
for(i=0;i<M;i++){
for(j=0;j<N;j++){
scanf("%d",&f[i][j]);
}
}
}
int num(int s){//每种状态中有多少个1
int j;
for(j=0;j<=s;j++){
int t=0;
while(t<N){
if(j & (1<<t)){
sum[j]++;
}
t++;
}
}
}
int checkrow(int j){//判断同一行是否有相互攻击的
if(j&(j<<1)) return 0;
if(j&(j<<2)) return 0;
return 1;
}
int check(int i,int j){//第i行状态j既满足同行不相邻,且炮兵部署的区域在合理区域内,没在山上
if(kind[j]==-1){
return 0;
}
int t=0;
while(t<N){
if(((j & (1<<t))!=0) && (f[i][N-t-1]==0)){//检查是否有在山上放炮兵的
return 0;
}
t++;
}
return 1;
}
int main(){
int i,j,k,t,s;//i行状态j,i-1行状态k1,i-2行状态k2
char c;
memset(dp,0,sizeof(dp));
memset(sum,0,sizeof(sum));
scanf("%d%d",&M,&N);
init();
s=(1<<N)-1;//总状态数
num(s);//各状态中1的个数
for(i=0;i<=s;i++){
if(checkrow(i)==1){
kind[i]=i;//状态i是否可以满足同行不冲突
}
else kind[i]=-1;//冲突
}
//第一行
for(j=0;j<=s;j++){
if(check(0,j)==1){
dp[0][j][k]=sum[j];
}
}
//第二行
for(j=0;j<=s;j++){
if(check(1,j)==0) continue;
for(k=0;k<=s;k++){
if(check(0,k)==0) continue;
if((kind[j] & kind[k])==0){
dp[1][j][k]=dp[0][k][0]+sum[j];
}
}
}
//核心算法,动态规划
for(i=2;i<M;i++){//第i行
for(j=0;j<=s;j++){//i行的j状态
if(check(i,j)==0) continue;
for(k=0;k<=s;k++){//i-1行K状态
if(check(i-1,k)==0) continue;
for(t=0;t<=s;t++){//i-2行t状态
if(check(i-2,t)==0) continue;
if((kind[j] & kind[k]) || (kind[j] & kind[t])) continue;//状态是否相互冲突
dp[i][j][k]=max(dp[i][j][k],dp[i-1][k][t]+sum[j]);
}
}
}
}
int ans=0;//找最大
for(i=0;i<=s;i++){
for(j=0;j<=s;j++){
ans=max(ans,dp[M-1][i][j]);
}
}
printf("%d",ans);
}