Python版本gurobi实例 2022-03-01

该博客介绍了如何利用Gurobi优化软件在Python中解决线性规划问题。通过创建模型、定义变量、设置目标函数和添加约束,然后优化模型并输出解的详细过程,展示了Gurobi在数学优化领域的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

gurobi是一个用来进行优化的程序,可以求解优化问题。有python版本接口。

例子(来自 https://www.gurobi.com/documentation/9.5/quickstart_mac/cs_example_mip1_py.html ):

import gurobipy as gp
from gurobipy import GRB

try:

    # Create a new model
    m = gp.Model("mip1")

    # Create variables
    x = m.addVar(vtype=GRB.BINARY, name="x")
    y = m.addVar(vtype=GRB.BINARY, name="y")
    z = m.addVar(vtype=GRB.BINARY, name="z")

    # Set objective
    m.setObjective(x + y + 2 * z, GRB.MAXIMIZE)

    # Add constraint: x + 2 y + 3 z <= 4
    m.addConstr(x + 2 * y + 3 * z <= 4, "c0")

    # Add constraint: x + y >= 1
    m.addConstr(x + y >= 1, "c1")

    # Optimize model
    m.optimize()

    for v in m.getVars():
        print('%s %g' % (v.VarName, v.X))

    print('Obj: %g' % m.ObjVal)

except gp.GurobiError as e:
    print('Error code ' + str(e.errno) + ': ' + str(e))

except AttributeError:
    print('Encountered an attribute error')
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值